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Visual Stimuli Generated by Biochemical Reactions
Discrete Chaotic Dynamics as a Basis

for Neurofeedback

Olga Grechko, MSc
Vladimir Gontar, PhD

ABSTRACT. Introduction. In this article a novel methodology for a neurofeedback system is
proposed. It is based on the visual stimuli generated by the distributed biochemical reactions
discrete chaotic dynamics (BRDCD) of brain neurons. These visual stimuli take the form of
symmetrical colored images known as mandalas.

Method. The proposed biofeedback system applies a BRDCD mathematical model to trans-
form an on-line recording of EEG signals into a simulated time-series EEG and into computer
generated series of mandala images. Thus, these images represent experimentally measured EEG
and therefore reflect the subject’s mental state.

Results. It will be shown that good qualitative similarity between simulated and experimental
EEG was achieved. The examples of generating series of mandala images using experimental
EEG will be demonstrated.

Conclusion. Based on Jung’s theory of the healing power of the psychological phenomenon of
mandala images, it is proposed that visual stimuli in the form of mandalas could facilitate fast
and effective neurofeedback training, thereby providing a therapeutic effect.

KEYWORDS. Discrete chaotic dynamics, EEG, mandala symbolism, neurofeedback

INTRODUCTION

It is well known that visual stimuli and=or
feedback play an important role in neuro-
feedback training processes (Thompson &
Thompson, 2003). In this work, we present
an innovative method for creating visual
stimuli for use in neurofeedback. The pro-
posed visual stimuli take the form of symme-
trical colored images known as mandalas.
According to Jung (1973), the majority of

mandalas are circular images containing
patterns in multiples of four in the form of
a cross, a star, a square, and so on, although
individual mandalas may present a variety of
different motifs and patterns. Jung found
that, as a psychological phenomenon, man-
dalas appear spontaneously in dreams, in
certain states of conflict, and in cases of schi-
zophrenia. He considered the mandala
images painted by his patients to reflect their
mental state in attempts at self-healing. In
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his book Mandala Symbolism, he stated,
‘‘Even the mere attempt in this direction
usually has a healing effect, but only
when it is done spontaneously. Nothing
can be expected from an artificial repetition
or deliberate imitation of such images’’
(p. 5).

Jung wrote about a series of mandala
images painted by one of his patients over
a number of years (Jung, 1973). The series
started with the spontaneous appearance of
certain pictures in the patient’s mind.
Although patient had no artistic skills or pre-
vious experience in painting, Jung encour-
aged her to express her fantasies in
painting. He considered the appearance of
such images as attempts by the subconscious
to reveal its content by way of ‘‘individua-
tion.’’ He tried to interpret the images but
did not reveal his thoughts to the patient.
As the therapy advanced, the pictures
changed, reflecting changes in the patient’s
mental state and at the same time aiding
her progress. In our opinion, this ‘‘therapy’’
presents an example of a pro-neurofeedback
training process.

Jung’s findings reveal the rich potential of
mandalas for neurofeedback. But if we want
to use them in practice, we are faced with the
problem of how to replicate brain creativity
processes in the form of images. Here, it

seems that the general problem lies in
constructing a theoretical model of brain
functioning that will combine neuronal
electrical activity (as observed by EEG)
with the creative patterns, such as mandalas,
that emerge from this activity. Such a
theoretical model should connect the inter-
nal biochemical processes taking place in
the brain neurons with macrocharacteristics
reflecting the collective behavior of the brain
neurons responsible for brain functioning.
The biochemical reactions discrete chaotic
dynamics (BRDCD) model visualizes brain
processes in the form of creative images,
as proposed in Gontar (1997, 2000, 2003,
2004).

Here, we intend to apply the BRDCD
mathematical model for fitting, online in
a neurofeedback loop, the measured EEG of
an individual, denoted EEGE, to BRDCD-
generated images corresponding to a theoreti-
cal time series (EEGT). The simulated images
will be directly related to the experimentally
measured biological signals (EEGE) of our
test participant, which reflect the participant’s
mental state. Exploiting the proposed
BRDCD mathematical model that formally
connects—and provides visualization of—a
participant’s mental state with the BRDCD
images, we can implement a neurofeedback
system of visual stimuli (generated images,

FIGURE 1. Block diagram of the proposed neurofeedback method. Note. BRDCD¼ biochemical reactions
discrete chaotic dynamics.
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as shown in Figure 1). In the light of the
experience of Jung, we expect that BRDCD-
based neurofeedback will provide fast and
effective neurofeedback training.

BACKGROUND AND METHODOLOGY

According to BRDCD, each neuron can
be simulated as a ‘‘biochemical reactor’’ that
has the ability to exchange information
with all the other neurons connected to it
(Figure 2). By ‘‘information exchange,’’
we mean another channel of interaction in
addition to mass (via chemical reactions),
charge, and energy exchange. In BRDCD,
information exchange is formally taken into
consideration by establishing the dependence
of the model’s parameters (rate constants)
from the states of other neurons character-
ized by the concentrations of the chemical
constituents within the neurons. The entire
complex interconnected network operates
according to some initial hypothesis about
the mechanism of biochemical reactions in
the individual neuron including information
exchange between the neurons. The compu-
tations of such a mathematical model
should correspond to the real distributions
of the chemicals of the neuronal masses

and the evolution of these distributions in
time and space.

We assume that distributed chemical con-
centrations of neuronal networks are respon-
sible for mental activity, including creativity.
According to this basic premise, an artistic
image would initially appear in the brain in
the form of the distributed chemical concen-
trations of the neurons, and the output
would then be a concrete pattern created
by the individual. This pattern could be
visualized by the proposed mathematical
model (Gontar & Grechko, 2006b).

BRDCD basic equations may be
constructed for any mechanism involving
transformations of the constituents of a
system, which are expressed by a matrix of
stoichiometric coefficients, and formally
including into the consideration information
exchange between the constituents:

XN

i¼1

nliAi ¼ 0; i ¼ 1;2; . . . ;N; l ¼ 1;2; . . .N �M

ð1Þ

In Equation 1, as shown in Figure 2
denote information exchange between
neurons. According to chemical reactions
discrete chaotic dynamics, in any transfor-

FIGURE 2. Network of discrete space-distributed interconnected neurons, with each neuron representing an
individual ‘‘biochemical reactor’’ (where Ai denotes chemical constituents and n li is a matrix of stoichiometric
coefficients).
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mation mechanism, a system’s constituents
can be represented in discrete time tq (q¼ 0,
1, 2,. . ., Q) and discrete two-dimensional
space designated by the integer coordinates
�1<Rp, Rs<1, where p is the index
denoting the rows and s is the index denoting
the columns. For practical reasons, we limit
our consideration to a discrete square lattice
of final size R�R, with coordinates

Rp; Rs ¼ 1; 2; :::;R:

The basic equations of BRDCD, when
written for a particular mechanism of trans-
formation of constituents and solved in
discrete time and space, provide a practically
unlimited source of complex signals in the
form of discrete time-series that encompass
chaotic and complex patterns in the form
of two-dimensional images, including man-
dalas. These results are used in the proposed
methodology for a biofeedback system.

Let us consider one of the simplest initial
hypotheses about a possible mechanism of
chemical transformations taking place in an
individual neuron. The hypothesis describes
the interaction between three chemical con-
stituents, A, B, and C:

where the solid arrows denote the che-
mical transformations of the constituents,
the broken-line arrows denote information
exchange between the constituents inside
each cell of the lattice, and the finely dot-
ted arrows denote information exchange
between the constituents in a particular cell
and the constituents in the closest neighbor-
ing cells.

For this particular mechanism, a system
of three nonlinear algebraic difference equa-
tions that describes the spatial-temporal
dynamics of the neuronal network just
presented can be derived from the basic
equations of the BRDCD approach. For
consistency of presentation, we repeat the
description of the BRDCD mathematical
model for mechanism (2) given in Gontar
and Grechko (2006a, 2006b, 2007).

X
tq

1 ðRp;RsÞ ¼
b

1 þ p1ðX tq�1
i ðr�ÞÞ þ p1ðX tq�1

i ðr�ÞÞp2ðX tq�1
i ðr�ÞÞ

ð3Þ

X
tq

2 ðRp;RsÞ ¼
bp1ðX tq�1

i ðr�ÞÞ
1 þ p1ðX tq�1

i ðr�ÞÞ þ p1ðX tq�1

i ðr�ÞÞp2ðX tq�1

i r�ÞÞ
ð4Þ

X
tq

3 ðRp;RsÞ ¼
bp1ðX tq�1

i ðr�ÞÞp2ðX tq�1

i ðr�ÞÞ
1 þ p1ðX tq�1

i ðr�ÞÞ þ p1ðX tq�1

i ðr�ÞÞp2ðX tq�1

i ðr�ÞÞ
ð5Þ

where

p1ðX tq�1

i ðr�ÞÞ ¼ k1 exp �
X3

i¼1

aiX
tq�1

i ðRp;RsÞ þ
X3

i¼1

biX
tq�1

i ðr�Þ
" #( )

ð6Þ

p2ðX tq�1

i ðr�ÞÞ ¼ k2 exp �
X3

i¼1

aiX
tq�1

i ðRp;RsÞ þ
X3

i¼1

biX
tq�1

i ðr�Þ
" #( )

ð7Þ
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where X
tq

i ðRp;RsÞis the concentration of
the ith constituent that is calculated in each
cell of the lattice with coordinates (Rp,Rs)
and that characterizes the system’s particular
state at discrete time tq (q¼ 1,2,. . .,Q);
plðtq�1; r�Þ is a function of the concen-
trations of the system’s constituents
X tq�1ðRp;RsÞ calculated at a previous moment
of discrete time tq�1 and of the neighboring
concentrations X

tq�1

i ðr�Þ; bj is the total con-
centration of the jth main constituent; kl is
the rate constant for the lth reaction; ali are
empirical parameters that characterize the
local information exchange taking place
between the constituents inside the considered
cell of the lattice; and br

li are empirical
parameters that characterize information
exchange between the constituents in eight
closest neighboring cells, including the cell
under consideration (r¼ 1, 2,. . .,9), with coor-
dinates denoted by:

r� ¼½ðRp � 1;Rs � 1Þ; ðRp � 1;RsÞ;
ðRp � 1;Rs þ 1Þ; ðRp;Rs � 1Þ;
ðRp;RsÞ; ðRp;Rs þ 1Þ;
ðRp þ 1;Rs � 1Þ;
ðRp þ 1;RsÞ; ðRp þ 1;Rs þ 1Þ�:

The mathematical model 3 to 5 has nine
parameters (b, k1, k2, a1, a2, a3, b1, b2, b3)
that should be defined according to the type
of image desired (symmetrical, nonsymmetri-
cal, spiral, etc.). For any given set of
parameters, Equations 3 to 5 generate a
sequence of lattice-distributed concen-
trations (Figure 3) of the three chemical
constituents ðX tq

1 ðRp;RsÞ; ðX tq

2 ðRp;RsÞ and

X
tq

3 ðRp;RsÞ. A schematic representation of
this process is shown in Figure 3. Each cell
in this lattice represents the concentration
of a single chemical constituent (e.g.,
X

tq

1 ðRp;RsÞ in an individual neuron). There-
fore, if we pick, for example, the neuron in
the upper left corner (marked by black cir-
cles in Figure 3a) and plot concentrations
of the chosen constituent over time tq, we
obtain a discrete time-series corresponding
to the evolution of the concentrations within
the individual neuron (Figure 3b).

The evolution of the entire neuronal net-
work on the considered lattice can be visua-
lized as a sequence of colored images. For
this purpose, we assign to each concentra-
tion value (Figure 4b) a particular color
from a color palette (Figure 4a). In this
way, equal values are visualized with the
same color (as designated, e.g., with red cir-
cles in Figure 4c). Therefore, we obtain an
image that represents the discrete space
(lattice)-distributed concentrations of the
constituent X

tq

1 ðRp;RsÞ for a given instant
of time tq.

Figure 5 presents some examples of
images generated by the aforementioned
mathematical model (Equations 7–9). As
can be seen, these images meet the criteria
for the mandalas described by Jung: they
constitute circular patterns with symmetry
of four crosses (‘‘quaternity’’). The mandala
images presented in Figure 5 differ one from
the other, and this difference in forms and
colors depends on the parameters of the
mathematical model. It is obvious that dif-
ferent sequences of images will correspond
to different discrete time-series (amplitude,
frequency) generated by each cell of the lat-
tice (neurons).

with the initial and boundary conditions:

X t0

i ðRp;RsÞ ¼
bj; i ¼ j
0; i ¼ M þ 1;M þ 2; . . . ;N

�
ð8Þ

X
tq

i ðRp;RsÞ ¼
Xi

tqðRp;RsÞ; 1 � Rp;Rs � R ðinside the latticeÞ
0; Rp;Rs < 1;Rp;Rs > R ðoutside the latticeÞ

�
ð9Þ
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Now let us apply linear superposition
(Equation 10) for these discrete time series
to obtain an integrated signal representing
the temporal dynamics of the whole neuro-
nal network under consideration, where hi

are empirically defined parameters:

EEGT ¼
X

hiX
tq

i ðr�Þ
i ¼ 1; 2; . . .R � R ð10Þ

We call this integrated signal, which
reflects the temporal dynamics of the whole
lattice-distributed neuronal network under
consideration, a ‘‘simulated EEG signal’’ or
EEGT. Figure 6a and b presents two exam-
ples of integrated EEGT signal obtained for
hi ¼ 0:5; 8i and for two different sets of

parameters (b, k1, k2,a1, a2, a3, b1, b2, b3),
Equations 3 to 5.

To combine signals from two (or more)
local neuronal networks, we propose to
apply superposition 10 of already-integrated
signals resulting from different neuronal net-
works. This procedure will constitute a more
realistic approach to the brain functioning,
where different parts of the brain (presented
by local neuronal networks) operate in paral-
lel to contribute to the measured integrated
EEGE and should therefore be taken into
account. Figure 6c presents an example of
an integrated EEGT signal for two different
neuronal networks.

To apply the aforementioned methodol-
ogy, one can establish a correlation between
EEGT, that is, an EEG simulated by a

FIGURE 3. (a) Schematic representation of discrete time and space, where each cell (neuron) contains che-
mical’s concentrations that change with the discrete time tq. (b) Example of a discrete time-series representing
temporal evolution of the concentration of the chemical constituent within the individual neuron (marked by
black spots). (c) Example of discrete time-series from another neuron (indicated by gray spots).
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BRDCD time-series, and an experimentally
measured EEGE. It can be shown that direct
comparison of the simulated and measured
time series in terms of their synchronized

amplitudes by using the least-squares
method is computationally ineffective.
Therefore, we propose to fit the experimental
data to our model in the frequency domain.

FIGURE 5. Examples of mandala images generated by biochemical reactions discrete chaotic dynamics
BRDCD.

FIGURE 4. Encoding of the calculated concentration of one of the neuron’s constituents by means of a color
palette (a). Equal values shown in (b) are encoded with the same color, as for example, values marked by red
circles (c).
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The fitting is achieved by varying the nine
parameters of the model (Equations 3–5) so
as to minimize the least-squares difference
between the spectrum of the experimental
EEGE and that of the theoretical EEGT.

RESULTS

In this section, we present experimental
verification of our theoretical approach.
We applied the aforementioned methodology
to EEGE signals with the aim of generating
a corresponding series of images. For
recording the EEGE, we used a custom-built
EEG amplifier with four channels and a
sampling rate of 250 samples per second. Dis-
posable golden electrodes were used in the
experiment. EEGE signals were obtained
using single channel assessment (referential
montage with reference to ear lobes). The
recording was accomplished with a gain of
5,000, providing us with a full-scale 1-mV
peak-to-peak. The filters were set at low pass

(LP) 125 Hz (24 db=octave) and high pass
(HP) 0.16 Hz (12 db=octave). We applied
neither digital filtering nor artifacts removal.
Our participant was healthy 29-year-old
man with no known medical problems.

Figure 7 (upper panel) shows a 1-s segment
of a raw EEGE recorded over Pz with the
participant’s eyes open (upper part). The
central panel of the figure shows the inte-
grated time-series generated by the BRDCD
mathematical model, which represents the
temporal dynamics of 10,000 neurons (250
iterations corresponding to 250 samples of
the 1-s EEGE segment). The lower panel of
Figure 7 presents a representative sample
of 6 of the 250 mandala images correspond-
ing to the simulated signal. To analyze
correspondence of the EEGT and EEGE sig-
nals we compared these two segments by com-
puting their bandwidth spectra (Figure 8).
Here we can clearly see the qualitative corre-
spondence of these two signals within the
1–40 Hz frequency domain (we have omitted
high frequencies on a plot [Figures 8 and 10],

FIGURE 6. (a, b) Examples of simulated EEGT signals for two different series of mandala images.
(c) Example of combined signal coming from two different groups of neurons: combination of the integrated
signals presented in Figure 6a and 6b.
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but they were included into consideration for
EEG spectral analyses).

Figure 9a shows a 1-s segment of a raw
EEGE recorded over Cz with the partici-
pant’s eyes closed. Figure 9b shows the inte-
grated time-series generated by the BRDCD
mathematical model, which represents the
temporal dynamics of 10,000 neurons (250
iterations corresponding to 250 samples of
the 1-s EEGE segment). Figure 9c presents
six mandala images chosen arbitrarily and
corresponding to six tq values (q¼ 1, 50,
100, 150, 200, 250) of the signal in
Figure 9b. Again, the qualitative resem-
blance between EEGE and EEGT can be seen
and was confirmed by the corresponding
spectra (Figure 10).

CONCLUSIONS

The proposed method for neurofeedback
provides a direct connection between experi-
mental EEGE signals and the states of
spatially distributed neuronal networks in
the form of colored symmetrical images—
mandalas. We propose to use the EEG-
related mandalas as visual stimuli in a
neurofeedback training process. In view of
the belief of Jung—that mandala images,
being generated involuntarily, may have a
therapeutic effect on a person’s mental
health—we predict that stimuli of this
kind could provide fast and effective training.
The mandalas generated involuntarily
according to the mental state of our test

FIGURE 7. (a) One-s (250 samples) segment of an experimental raw EEGE recorded over Pz with eyes open.
(b) One-s (250 samples) segment of an EEG simulated by biochemical reactions discrete chaotic dynamics.
(c) Examples of 6 (q¼ 1, 50, 100, 150, 200, 250) of 250 mandala images corresponding to the simulated
EEGT.
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FIGURE 9. (a) One-s (250 samples) segment of the raw EEGE recorded over Cz with the participant’s eyes
closed. (b) One-s (250 samples) segment of an EEGT simulated by biochemical reactions discrete chaotic
dynamics. (c) Example of 6 (q¼ 1, 50, 100, 150, 200, 250) of 250 mandala images corresponding to the simu-
lated EEGT.

FIGURE 8. (a) Bandwidths of the experimental EEGE shown in (a). (b) Bandwidths of the EEGT simulated by
biochemical reactions discrete chaotic dynamics, shown in (b).
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participant—as presented by his EEG—
should fit the requirements of Jung. Experi-
mental verification of the proposed principles
for constructing a neurofeedback system
demonstrates sufficient correspondence
between real EEGE signals and those mod-
eled by BRDCD. EEGE-related colored sym-
metrical images generated by the BRDCD
mathematical model demonstrated presence
of the basic features of mandalas described
by Jung, that is, circular images containing
patterns in multiples of four in the form of
a cross, a star, a square, and so on.
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