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SCIENTIFIC ARTICLES

Towards a Coherent View of Brain Connectivity

Thomas F. Collura, PhD, PE

ABSTRACT. Background. The electroencephalogram provides a myriad of opportunities to
detect and assess brain function and brain connectivity.

Method. This article describes the relationship between local and non-local brain activation and
synchrony, and discusses the use of appropriate connectivity measures to study and train functional
brain connectivity. Specific connectivity measures are described including coherence, phase, syn-
chrony, correlation, and comodulation. The measures are contrasted and compared in terms of their
ability to detect particular aspects of connectivity and their usefulness for neurofeedback training.

Results. Connectivity metrics for example EEG data are calculated and shown graphically, to
illustrate relevant principles.

Conclusion. It is possible to assess brain connectivity and integrated function for both assess-
ment and training, through the use of appropriate metrics and display methods.

KEYWORDS. Brain connectivity, coherence, EEG, phase QEEG, quantitative electro-
encephalography, spectral correlation, synchrony

The electroencephalogram (EEG) is a
uniquely powerful and revealing indicator of
brain electrical function and one of the best
methods available for assessing and monitor-
ing neural activity in real time. Measurable
scalp EEG is produced by the summation,
through volume conduction, of postsynaptic
potentials of the pyramidal cells within the
cerebral cortex cortex (Burgess & Collura,
1992). When cells polarize (or depolarize) in
unison, the resulting potentials are added in

the conducting media, leading to external
fields that can be measured. This phenomenon
is so pronounced that a mere 1% of cortical
cells in a 1 cm2 area of cortex, when acting in
synchrony, are sufficient to account for more
than 96% of the EEG signal (Shaw, 2003). In
other words, the existence of an EEG potential
implies some degree of local synchrony within
a population of cells lying beneath the affected
sensor. By an extension of this logic, if a mere
1% of cortical cells are coordinated in some
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way with 1% of the cells in some other loca-
tion, then 96% of the connectivity might be
accounted for in the EEG. The question is,
how do we define this connectivity and how
do we measure it?

The brain comprises cortical centers, con-
nections between cortical centers, and connec-
tions between cortical centers and subcortical
structures (most notably the thalamus).
Cortical centers are neighboring cells that act
in a synchronize manner measured as an
EEG wave from a single electrode sensor.
The cortical centers of short-range connections
between close electrode locations and long-
range connections between distant electrode
locations have synchrony or coordinated elec-
trical activity. This relationship of coordinated
electrical activity between EEG signals can be
measured with mathematical calculations or
connectivity measures. The connectivity mea-
sures reveal important differences between
short-range and long-range cortical centers
and are fundamentally different from the cor-
tical center activity from a single electrode.
Connectivity measures extend our existing
knowledge to incorporate increasing distances,
thus reflecting whole brain function as exten-
sions and generalizations of the concepts
implicit in localized brain function.

Connectivity can measure the similarity
between channels in one or both of two
important contexts, postprocessed and real
time. In the postprocessed context, the quan-
titative EEG (QEEG) is examined after the
entire QEEG is acquired. Fast-Fourier
Transformation (FFT) and other trans-
form-based methods are sufficient and can
provide a level of precision and understand-
ability that is of value in normative applica-
tions. However, FFT-based methods have
slower time response, owing to the need to
acquire an epoch of data (on the order of 1
sec) before the estimate can be made. Taper-
ing windows further confound this delay by
emphasizing wave components in the center
of the window, thus imposing a firm
delay of half the epoch size, thus incurring
a delay of 500 msec, which maybe detrimen-
tal to EEG biofeedback applications. In
contrast, the digital filters and related
methods including ‘‘complex demodulation’’
and ‘‘joint time-frequency analysis’’ provide

real-time processing while retaining generality
and accuracy (Collura, 1990). The main ‘‘cost’’
of such approaches is the need to predefine the
component band of interest (e.g., 8–12 Hz).

Connectivity is concept in which mathe-
matical calculations can be applied. Like
the concept of intelligence or temperature,
we make assumptions about the measure
with certain understandable limitations.
For example, we never measure temperature
directly. By making assumptions and using
definitions, we measure some other property
such as the length of a column of mercury or
alcohol, the deflection of a metal strip. By
recording such physical entities and inter-
preting them in an agreed-upon way, we
arrive at a measurement that we all agree
to call ‘‘temperature.’’ The situation is not
so different in the case of brain connectivity.
We actually record one or more electrical
potentials that we subject to computations
or an agreed-upon representation. Such
computations produce an estimate of a con-
cept, which we interpret generally as the
similarity between activity in the brain, and
use in the pursuit of brain connectivity
assessment or training. As seen in Figure 1,
any connectivity measure falls within the
realm of system identification and parameter
estimation. By making assumptions, we
derive an ideal property, which we may seek
to measure. Through appropriate definitions,
measurements, and computations, we arrive
at an estimate of a quantifiable property,
which always puts us into an abstract realm.

There are many ways or methods to
measure EEG connectivity. This is alike
to assessing the similarity between any two

FIGURE 1. The relationship between system
properties and measured properties.
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entities, be they signals, human beings, or
automobiles. Any connectivity measure that
describes the relationship between two sites
has potential merit and may reflect the amount
of information shared or the speed of informa-
tion sharing. It may be applicable in real time
or in a postprocessed EEG. As long as the
measure of connectivity has value in assessing
or training brain function, it should be consid-
ered among candidate methods and is beyond
simple amplitude training. Connectivity mea-
sures may or may not have sensitivity to var-
ious properties of the electrical signal. For
example, a connectivity measure may be sensi-
tive to the phase of the signals (or it may ignore
phase) but may be sensitive to the absolute or
relative amplitudes of the signals or measure
quantities across frequency, time, or both.
Furthermore, the data source such as raw
waveforms, transformed quantities using
FFT, or filtered waveforms produced by digi-
tal filters or complex demodulation will affect
the connectivity measure. Although these
alternatives provide options for acquiring,
measuring, or training brain connectivity,
none of them is considered the only method
to measure connectivity. The formula for a
connectivity measure is not ‘‘recipe’’ for imple-
menting it in a real system, any more than
being told that cheesecake contains certain
ingredients is a recipe for success. Critical
issues such as timing, measurement of quanti-
ties, and order of computations affect may
limit the usefulness. In other words, it is rela-
tively simple to produce a connectivity mea-
sure that seems to behave as intended, but
there is a wide range of considerations that
must be addressed for a useful connectivity
measure to be produced. Thatcher (2007)
addressed these issues well in the case of classi-
cal coherence. In sum, these characteristics
provide a frame-work to describe the strengths
and weaknesses of connectivity measures.

SPECIFIC CONNECTIVITY
MEASURES

Heart-Rate Variability (HRV) Coherence

A measure in the field of HRV instru-
mentation and literature called ‘‘coherence’’

is more properly called ‘‘self-coherence.’’
This measure is computed using only one
signal or source and is a measure of the
spectral purity of the energy the signal. This
should not be confused with the ‘‘Coher-
ence’’ measure used in EEG or QEEG,
which is calculated from two signals or
electrodes.

Classical Coherence

Classical or ‘‘pure’’ coherence is a mea-
sure, derived from the engineering field,
designed to reveal connectivity as reflected
in a consistent phase relationship between
two or more signals. It is defined as the
cross-spectra normalized to the product of
the auto-spectra and interpreted as a genera-
lization of the Pearson correlation coefficient
to variables expressed in the complex
frequency domain. It has widespread use in
time-series analysis (Carter, 1987) and can
be expressed mathematically as

COHERENCE ¼ jHxyj2

jHxxjjHyyj

In this representation, the numerator is
the cross-spectrum between the two signals,
and the two terms in the denominator
represent the auto-spectra of the individual
signals. This can be defined for any
frequency component band or bin. When
calculated across frequencies, it produces
the coherence spectrum.

Pure coherence is independent of the
absolute phase separation between the sig-
nals. It is independent of the individual
amplitudes of the signals, in that it is possible
to have high coherence between two small
signals and low coherence between two large
signals. It is also possible to have high
coherence between a large signal and a small
signal. The spectral energy of interest can be
estimated by more than one method,
although the classical approach is to use
the Fourier Transform. When a transform
is used, certain decisions are already implicit,
such as the signal sampling rate; the epoch or
window used for analysis; choice of window-
ing factors such as Hamming, Henning, and
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so on; as well as smoothing factors used in
the computations. Similarly, when complex
demodulation is used to recover the coeffi-
cient estimates, characteristics such as filter
bandwidth, type, and order become signifi-
cant, as well as internal smoothing and shap-
ing factors applied to the coefficients.
Changes in any of these parameters will
affect the result, in terms of its time beha-
vior, its precision, its accuracy, and its ulti-
mate usefulness. Ultimately, it is from the
skill applied in determining and implement-
ing such details that specific instrumentation
and software derive their relative usefulness
and efficacy.

Figure 2 demonstrates the concordance
between two different implementations of
this type of coherence measure. It compares
1-min averages of a real-time coherence data
from an EEG training system (BrainMaster)
with postprocessed results (1-min samples of
EEG) from a the NeuroGuide QEEG assess-
ment system (Thatcher, 2007). Twenty points
are shown, representing five electrode pairs
and four frequency bands. Whereas the
BrainMaster system uses optimized real-time
quadrature filters with built-in coherence
detectors, NeuroGuide uses FFT’s of succes-
sive epochs of a 1-min EEG record to esti-
mate the spectral parameters. Whereas the
BrainMaster data are available 30 times
per second during the entire minute, the

NeuroGuide data require the session to be
over before results can be computed. These
are two different approaches to extracting
the relevant signal energy, and the averages
of the real-time data agree with the aggregate
data computed from the entire minute. This
agreement illustrates the ability to produce
a good match across the range of coherence
values from 2 to 70%. In sum, based on con-
sistent use of definitions, associated time
constants, and parameters, it is possible to
reach significant agreement between a real-
time measure and a postprocessed measure.

Spectral Correlation Coefficient (SCC)

Spectral correlation coefficient (SCC) is a
measure defined by Joffe (1992) and first
implemented in the Lexicor (Boulder, CO)
equipment produced beginning in the 1980s.
This measure is based on amplitude data pro-
vided by the FFT and is designed to reveal
similarities in the shape (profile) of the FFT
frequency spectral data. The measure can be
described in the question, ‘‘Do the frequency
spectra look similar across frequency?’’
and employs a measure that is a standard
Pearson correlation of the amplitude data
within a designated frequency band. This
was described as a spectral morphology com-
parison using the formula:

SPECTRAL CORRELATION

¼ ðRjXf jjYf jÞ2

ðRjXf j2RjYf j2Þ
The spectral correlation was expressed in

percentage, where X and Y represent the
Fourier magnitude series of the two channels
(Joffe, 1992) and measures how similar the
two signals’ FFT spectra are in shape,
regardless of phase, and independent of their
absolute or relative magnitudes. It can be
extended to become a function of time, by
taking successive samples into the analysis.

Figure 3 shows the concordance between
two independent implementations of the
SCC measure (Lexicor NRS-2D and
BrainMaster 2EW). The agreement is best
at low frequencies and diverges at high fre-
quencies, at which the individual response

FIGURE 2. Relationship (agreement) between two
different implementations of classical coherence
using EEG recordings.
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characteristics of the amplifiers dominates
the computation. This illustrates the impor-
tance of matching the frequency response
of a system, when implementing a measure.
In this particular case, the tuning of the sys-
tem to match the desired values consists of
reducing the high-frequency response to
match that of the less responsive amplifier.
It is visually evident that by introducing a
falloff in frequency response that has
increasing effect at higher frequencies, the
two measures could be brought into well
within 1% agreement. SCC can be computed
for any epoch that produces an estimate of
the FFT spectral energy, which is to say that
it is meaningful for a single FFT sample.
Thornton (2000) found this measure to be
of significant value in the assessment and
training of children with learning disabilities
and related disorders. To this end, he con-
structed a database of normative values as
well as clinical procedures leading to effec-
tive training.

Comodulation

Comodulation was described by Sterman
and Kaiser (2001) and was intended as a
means of assessing similarity in the time
behavior of EEG component amplitudes.
The measure can be described in the ques-
tion, ‘‘Do the signals wax and wane in a

correlated manner?’’ The calculation for
comodulation looks like a standard Pearson
correlation coefficient:

COMODULATION ¼ ðRjXtj jYtjÞ2

ðRjXtj2 RjYtj2Þ

In this expression, the X and Y values repre-
sent successive measurements of the signal
amplitudes across time for signals X and Y,
respectively. Comodulation is measured
across time, so it is necessary to define the
time duration and interval of measure during
the computation. A comodulation value
depends on these parameters, as well as the
exact conditions of the detection of the
amplitude data.

Phase Difference

There are various methods of measuring
phase. The traditional method is to calcu-
late the arctangent of the ratio of quadra-
ture components derived from the FFT.
These computations suffer from problems
including ‘‘wraparound’’ and related stabi-
lity issues, in that as two signals are conti-
nually sliding in phase, there comes a time
when they are again in phase and the mea-
sure needs to ‘‘snap’’ back to zero. The
conditions of this transition introduce ambi-
guities in the definition and use of the mea-
sure. Collura (2001) described a measure
that is sensitive to phase and can be derived
from complex demodulation in real time.
Thatcher (2007) also recently introduced a
dynamic phase measure based on complex
demodulation as well as a practical method
of assessing (and training) phase resetting.
The phase of a particular signal is generally
defined as

PHASE ¼ Arc tan
b

a

� �

in which b represents the ‘‘imaginary’’ or
‘‘out-of-phase’’ component and a represents
the ‘‘real’’ or ‘‘in-phase’’ component of the
signal. Although this definition is clear for
a defined signal, estimating the phase of an
actual time-series is more complex (a and b

FIGURE 3. Relationship between two different imple-
mentations of spectral correlation coefficient. The
agreement is seen to depend on the frequency
response of the overall system.
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can be determined by Fourier Transform,
complex demodulation, or any other applic-
able method). The phase separation between
two signals is computed by subtracting their
individual phases:

PHASED FFERENCE ¼ Arc tan
b2

a2

� �

� Arc tan
b1

a1

� �

This measure also has issues with wrap-
around, as well as stability and accuracy con-
cerns raised by the need to take a ratio of
two numbers that may be very small or very
different in magnitude. In particular, if two
signals ‘‘slide’’ alongside each other, there
is a discontinuity in this value resulting in a
need to snap the values back into alignment.
Alternate forms of phase relationships can
be derived, which have different properties
for specific uses. There are options for
expressing the reported phase measure,
including degrees or percentages, in which
100% may mean either ‘‘zero degrees out of
phase’’ (Joffe, 1992) or, alternatively, ‘‘180
degrees out of phase’’ (Collura, 2001).

Similarity

Collura (2001) described a measure of
‘‘similarity’’ that is alike to that of classical
coherence but has several important differ-
ences. First, it is maximized when the signals
are in phase, which is to say that their phase
difference is zero. It is a measure of
synchrony, not just phase stability. Second,
it is maximized when the signals are of simi-
lar size. The general form of this measure’s
sensitivity is given by:

SIMILARITY½A;B� ¼
2AB

A2 þ B2

in which A and B are the complex quantities
of the two signals. This reaches unity when A
and B are identical in both amplitude and
phase. This measure produces a value that
is relevant to EEG synchrony, as a special
case of EEG coherence. This measure has

been found to be of particular value in the
assessment of consciousness in the applica-
tion of intraoperative monitoring (Alshab,
Collura, & Voltz, 2005) and may be useful
for QEEG biofeedback assessment and
training.

Asymmetry

Asymmetry may also be regarded as a
connectivity measure, in that it reflects rela-
tive activation between the sites of interest.
Asymmetry can be measured in any manner
that reveals differences in signal amplitudes.
Baehr and Rosenfeld (2001) derived a parti-
cularly useful measure, which takes the form
of the difference between the signal ampli-
tudes normalized to the sum of their ampli-
tudes. This measure takes the form

ASYMMETRY ¼ A� B

Aþ B

In this calculation, A and B are the instanta-
neous values of a given estimate, typically
alpha amplitude, in the two channels of
interest. This measure has the benefit of
being independent of the individual signal
amplitudes and preferring either very large
amplitude differences or lower amplitude in
both signals. EEG asymmetry is of particular
value in working with interhemispheric
EEG, in particular that of the frontal
lobes as it has been found to correlate with
depression (Baehr & Rosenfeld, 2001). The
measurement and training of frontal
EEG asymmetry has become an important
avenue in clinical neurofeedback when
applied to depressed patients. It is also of
potential value when used intrahemispheri-
cally, particularly front to back, in which
posterior amplitudes can be trained in rela-
tion to anterior amplitudes, to seek normal
relationships.

Raw Waveform Calculation

Another highly useful method is to simply
add (and=or subtract) the EEG signals as
raw waveforms and process the resulting sig-
nals in a conventional manner. This method

104 JOURNAL OF NEUROTHERAPY



was applied in the Capscan system and
further developed by others (McKnight &
Fehmi, 2001; Crane & Soutar, 2000). This
method has the benefit of being easy to
understand and interpret; and is simple to
use, in that the signal recombination simply
produces another signal, which may then
be subjected to any of the methods used for
signal processing, including transforms,
digital filtering, and joint time–frequency
analysis. The dependence of the channel
sum or difference on the individual signal
amplitudes and phases is easy to determine
and describe. This approach avoids the pit-
falls implicit in deriving a new measure,
implementing and validating it, and interpret-
ing the results. It further simplifies the imple-
mentation on different platforms, as the core
signal processing consists solely of algebraic
combination of the two or more raw signals.

Figure 4 shows a time–frequency plot and
illustrates the difference between the spectral
energy in the sum (left) and the difference
(right) of signals recorded from T3 and T4.
It is immediately visually evident that
although these signals have significant
shared (synchronous) energy in the theta
band, the activity in the alpha and low beta

bands is predominantly independent
(asynchronous). This difference is significant
in regard to making a choice regarding
monopolar or bipolar training.

CONNECTIVITY ASSESSMENT AND
TRAINING

The use of connectivity measures during
evaluation or assessment and training is a
significant challenge in that it is not generally
clear what is ‘‘good’’ in terms of any particu-
lar connectivity measure between specific
locations and=or within a component band
of interest. With very few exceptions, con-
nectivity in the brain has been described
as a ‘‘Goldilocks’’ aspect (D. Kaiser, July
2004, personal communication) in that the
connectivity measure is too low or too high
and only needs to be ‘‘just right’’ to ensure
optimal brain functioning. For this reason,
the availability of normative data is crucial
for the proper interpretation and use of con-
nectivity measures. Walker, Kozlowski, and
Lawson (2007) found that training coherence
without short-term guidance can lead to
coherence abnormalities that have clinical

FIGURE 4. Joint time–frequency analysis of the sum (left) and difference (right) computed between two EEG
signals. Synchronous and asynchronous EEG components are clearly separable.
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significance. When coherence is too high, it is
referred to as ‘‘hypercoherence’’ and when
coherence is too low, it is referred to as
‘‘hypocoherence,’’ and either of these
conditions can be adverse. For example, in
language areas either hypercoherence or
hypocoherence can be accompanied by dys-
functions such as stuttering, word grasping,
and related disorders of speech and language.
Bipolar (channel difference) techniques are
known to have a general effect of decreasing
coherence in any bands that are trained up.
This phenomenon likely plays a large role in
the experience that bipolar training between
T3 and T4, for example, may lead to unpre-
dictable and uncontrolled effects, requiring
frequent interviewing and coaching of the
trainee. If normative data and controlled
coherence training were applied in such situa-
tions, we could anticipate improved control
and predictability of training and a reduction
in adverse or unpredictable outcomes.

Thornton (1999) described a successful
clinical approach using SCC, applied to trai-
nees with learning disabilities. He developed
his own database of normative scores and
uses this in the assessment of clients and
the application of neurofeedback protocols.
In this approach, he honors the need for
the SCC to be within a normative range.
When excessively high scores are seen, down-
training is indicated, and when low scores
are seen, uptraining is used. A particular
challenge with this approach is the fact that
the normative scores are dedicated to a par-
ticular instrument (Lexicor) and do not gen-
eralize a priori to other systems. Training is
based on raw scores, so that, for example,
an SCC that may be low, with a value of,
say, 70, needs to be trained up to a normal
value of, say, 80, but not up to an abnormal
level of 90. The SCC measure depends on the
specific frequency response of the amplifiers;
although it is straightforward to match
scores in midband components (theta, alpha,
and beta), they do not match in bands in
which the amplifiers differ in frequency
response. The exact scores must be set into
the protocol and carefully watched during
the training process. Normal scores depend
on the sites involved, the frequency bands
studies, and the age of the trainee. The

construction of a useful clinical database is
time-consuming and does not generalize to
other measures. For this reason, an overt
effort must be made to implement a compar-
able measure on other platforms and to vali-
date it before this approach can be used on
them. A project with this goal is presently
underway between Thornton and the author.

Collura, Thatcher, Smith, Lambos, and
Stark (2008) developed a method based on
an embedded database that provides real-
time z scores and a specially tailored training
system. When this approach is used, mea-
sures are expressed as z scores for amplitude,
asymmetry, coherence, and phase. Real-time
z scores differ from conventional QEEG z
scores in two important ways. First, the
scores are derived from real-time complex
demodulation instead of the conventional
FFT and are available in real time with
minimal delay. Second, the real-time z scores
are computed based on within-subject short-
term variations andacross-subject variations,
whereas conventional QEEGs employ only
across-subjects statistics. The standard
deviations for real-time z scores are higher,
and the resulting z scores are typically
lower, and real-time z scores tend to be more
‘‘forgiving’’ and are more likely to appear
normal.

When z scores are used for EEG training,
a variety of targeting options are available.
The most obvious is to train toward the
norm or average range in which the protocol
is designed to guide the trainee into the nor-
mal range. There are various options avail-
able when using this approach including
the number of z scores available and the type
of reinforcement feedback. Training to the
norm may have several benefits: First, it
clearly avoids the pitfalls of training either
hypercoherence or hypocoherence. Second,
some protocols can ‘‘auto-select’’ the vari-
ables that are trained, in that they will auto-
matically ignore normal scores and will use
only the most deviant scores to produce the
contingent feedback. This is of particular sig-
nificance in light of the fact that connectivity
measures that were normal may become
abnormal in the course of training. Third,
the use of z scores during training may
relieve practitioners of some of the burden
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of a repeated cycle of QEEG=protocol
design=training=repeat QEEG (Smith 2008).

SUMMARY

This review defined and described
various brain connectivity measures for
QEEG analysis and neurofeedback (NF)
training. Table 1 is a summary of the defi-
nitions and sensitivities of the major EEG
connectivity measures during QEEG analy-
sis. This summary can guide the researcher
or clinician as to the strengths and weak-
ness of the measure. There is substantially
more information about QEEG analysis
relative to NF training. The current results
suggest that training to the norm or aver-
age seems the most logical and intuitive
approach to NF training of connectivity
measures. Clearly, there is a need for
further research on which measures of con-
nectivity are effective, at which sites, and
which frequency bands. Client variables
such as age, symptoms, and diagnosis
may need to be included in research on
NF outcome. This summary may serve as
a starting point for researchers and clini-
cians in the area of brain connectivity. A
review of Table 2 may guide research
and clinical decisions for NF training with
a summary of the training capabilities of
the EEG connectivity measures of Coher-
ence, Phase, Similarity, Spectral Correla-
tion, Comodulation, Asymmetry, Summed
Channels, and Difference of Channels. This
table refers to Uptraining as an increase and
Downtraining as a decrease to guide the choice
of connectivity measure and the use of that
measure during NF.
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