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A COMPARATIVE INVESTIGATION OF WAVELET FAMILIES FOR ANALYSIS OF EEG
SIGNALS RELATED TO ARTISTS AND NONARTISTS DURING VISUAL PERCEPTION,
MENTAL IMAGERY, AND REST

Nasrin Shourie1, S. Mohammad P. Firoozabadi2, Kambiz Badie3

1Department of Biomedical Engineering, Islamic Azad University, Tehran, Iran
2Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
3Research Institute for ICT, Tehran, Iran

Differences between the multichannel EEG signals of artists and nonartists were investigated
using wavelet coefficients during visual perception and mental imagery tasks and at rest. The
wavelet coefficients were calculated using wavelet functions such as Daubechies (order 1–10),
Coiflets (order 1–5), and biorthogonal (order 2.4). Each of the calculated approximation and
detail coefficients and their averages, standard deviations, and their energies were separately
used for discriminating the two groups. The Davies-Bouldin Index was used for evaluation of
the feature space quality. We found that the two groups are discriminable using the wavelet
coefficients calculated by all of the studied wavelet functions. It was also observed that level of
decomposition does not contribute significantly to discriminability. In addition, we observed
no considerable difference between approximation and detail coefficients for discriminating
the two groups. It was also found that a distinguishing coefficient may exist among the wavelet
coefficients, which can discriminate the two groups despite electrode placement. However,
separating the two groups is dependant on channel selection when using the energy, average,
and standard deviation of the wavelet coefficients. Finally, the two groups were classified by
selected wavelet coefficients and a neural gas classifier. The average classification accuracy
was 100% for classification of the two groups in the at-rest condition.

INTRODUCTION

Much research to date has evaluated the
differences between EEG signals of experts
and nonexperts during and prior to perfor-
mance of a skill. Previous research has investi-
gated the EEG signals of experts such as artists
and sportsmen. These studies found that the
patterns of cortical activity of experts and
nonexperts are different (Abernethy & Russell,
1987; Bhattacharyaa & Petsche, 2002; Bird,
1987; Collins, Powell, & Davies, 1990; Crews
& Landers, 1993; Fink, Graif, & Neubauer,
2009; Hatfield, Landers, & Ray, 1984; Haufler,
Spalding, Maria, & Hatfield, 2000; Karkare,

Saha, & Bhattacharya, 2009; Panga, Nadalb,
Müllerc, Rosenbergd, & Kleine, 2012; Petsche,
Lindner, Rappelsberger, & Gruber, 1988;
Petsche, Richter, Stein, Etlinger, & Filz, 1993;
Radlo, Steinberg, Singer, Barba, & Melinkov,
2002; Salazar et al., 1990; Shourie, Firoozabadi,
& Badie, 2011, 2013; Wagner, 1975a,
1975b). Most of the previous research has
focused on the power spectrum density of
the traditional EEG rhythms, which may not
be reliable due to the nonstationary nature
of the EEG signals (Collins et al., 1990; Crews
& Landers, 1993; Fink et al., 2009; Hatfield
et al., 1984; Haufler et al., 2000; Petsche
et al., 1988; Petsche et al., 1993; Radlo
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et al., 2002; Salazar et al.,1990; Shourie et al.,
2013; Wagner, 1975a, 1975b). Hence,
time-frequency features are highly reliable for
EEG signal analysis.

Wavelet transform can provide time-
frequency features. Therefore, many research-
ers use the wavelet transform for biological
signal analysis (Adeli, Zhou, & Dadmehr,
2003; Gandhi, Panigrahi, & Anand, 2011;
Gandhi, Panigrahi, Bhatia, & Anand, 2010;
Ghosh-Dastidar, Adeli, & Dadmehr, 2007;
Horrell, El-Baz, Baruth, Tasman, & Sokhadze,
2010; Hu, Wang, & Ren, 2005; Jahankhani,
Kodogiannis, & Revett, 2006; Sparto,
Parnianpour, Barria, & Jagadeesh, 2000). For
example, Adeli et al. (2003) used discrete
Daubechies and harmonic wavelets to study
epileptic EEG signals. They found that the tran-
sient features of EEG signals are accurately
determined and localized in both time and fre-
quency contexts using wavelet transform.
Jahankhani et al. (2006) recorded EEG signals
from healthy volunteers while at rest and
from epileptic patients during a seizure. They
decomposed the EEG signals into details D1–
D4 and one final approximation, A4, using a
discrete wavelet transform. Features such as
minimum, maximum, mean, and standard
deviation of the wavelet coefficients at differ-
ent subbands were calculated. Finally, the
two groups were classified using MLP and
RBF classifiers (Jahankhani et al., 2006).
Ghosh-Dastidar et al. (2007) applied a wavelet
transform to decompose EEG signals into delta,
theta, alpha, beta, and gamma frequency
subbands. Horrell et al. (2010) used a wavelet
transform for extracting the gamma rhythm
from EEG signals. Gandhi et al. (2010) investi-
gated epileptic and seizure-free EEG signals of
the same person using wavelet transform. They
decomposed both of the EEG data sets into
approximation and detail coefficients up to
the sixth-level using a db4 wavelet function.
Therefore, they discriminated the epileptic
and the seizure-free EEG signals using energy
values of the approximation coefficients and
a probabilistic neural network classifier. In
another study, different wavelet functions were
assessed for EEG decomposition. It was found

that Coiflets1 is the most appropriate function
for classification of the EEG signals (Gandhi
et al., 2011). Sparto et al. (2000) considered
fatigue of two trunk muscles (Erector spine
and Latisimus dorsi) using a wavelet transform.
They observed that fatigue increment yields a
significant elevation in the 13–22Hz wavelet
component of EMG signals. Hu et al. (2005)
employed a wavelet packet for feature extrac-
tion from EMG signals. They classified two
kinds of limb actions using the wavelet packet
energy at different frequency subbands.

In this article, we investigated differences
between EEG signals of artists and nonartists.
A review of research suggests employment of
wavelet transform for artistic expertise analysis.
Previous research has studied differences
between EEG signals of artists and nonartists.
For instance, Bhattacharya and Petsche
(2002) found that phase synchrony is signifi-
cantly higher in artists compared to non-artists
in the high frequency bands during visual per-
ception. Karkare et al. (2009) classified artists
and nonartists by scaling exponents and an
artificial neural network-based classifier. Their
average classification accuracy was 81.6%.
Other researchers have investigated differences
between EEG signals of artists and nonartists in
scaling exponents, too. They observed that
scaling exponents discriminate the two groups
when they are at rest. However, discriminabil-
ity in scaling exponents between the two
groups decreases during the performance of
similar cognitive tasks (Shourie et al., 2011).
In addition, it has been observed that artistic
expertise is related to reduced ERP responses
to visual stimuli (Panga et al., 2012). However,
there is no broad research that has investigated
differences between the two groups in terms of
wavelet coefficients.

This study explores how wavelet transform
may help to differentiate EEG signals of artists
and nonartists. It was not clear which wavelet
function is appropriate when considering artis-
tic expertise and which wavelet dependant
feature is proper for discriminating the two
groups. In addition, differences between the
two groups may be only observed in some of
the channels; however, the best channels for
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discriminating the two groups via wavelet
coefficients were not known.

This research sought to find the answers
to the aforementioned issues. Therefore, the
EEG signals were decomposed using various
wavelet functions such Daubechies (order
1–10), Coiflets (order 1–5), and biorthogonal
(order 2.4). Each of the calculated wavelet coef-
ficients was used for discriminating the two
groups. The feature space quality was evaluated
using the Davies-Bouldin Index (DBI). We
determined which wavelet functions are appro-
priate for artistic expertise analysis. The suitable
level of decomposition was determined. The
wavelet coefficients of each of the channels
were considered separately. It was also deter-
mined which channels are appropriate for dis-
criminating the two groups. Energy, average,
and standard deviation of the calculated wave-
let coefficients were used for discriminating
the two groups, too. Finally, it was ascertained
whether wavelet transform is an appropriate
tool for artistic expertise analysis.

METHODS

Data Set

This study utilized the EEG signals that were
obtained in a study by Karkare et al. (2009).
The participants in their research consisted of
20 women who were equally divided into
two groups—artists and nonartists. Artists grad-
uated from the Viennese Academy of Fine Arts
with an MA degree, and nonartists had no
specific interest or training in visual art. The
average ages of the two groups were 44.3
and 37.5 years old, respectively. The EEG sig-
nals were recorded at 19 electrode sites while
the subjects performed four tasks of visual

perception, four tasks of mental imagery and
at rest. The electrodes were placed according
to the International 10–20 System (Fp1, Fp2,
F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5,
P3, Pz, P4, T6, O1, and O2). The sampling fre-
quency was 128Hz. In the visual perception
condition, participants looked at a painting
presented onto a white wall for 2min. In the
mental imagery task, they mentally imagined
the painting just shown for 2min. In the at-rest
condition, they looked at a white wall for 2min
(Karkare et al., 2009).

DISCRETE WAVELET TRANSFORM

A wavelet is a smooth waveform that has lim-
ited length and an average value of zero.
Wavelet transform multi-resolution analysis
was first proposed by Mallet in 1989. This
transform is a linear operation that decom-
poses a signal into different frequency sub-
bands with appropriate localization in both
time and frequency domains. Wavelet trans-
form is implemented using a pair of FIR filters
called quadrature mirror filters (QMFs). One
of these FIR filters is a high-pass filter that sepa-
rates high-frequency components of an input
signal. The other is a low-pass filter that extracts
the low-frequency components of the signal.
The outputs of QMFs are de-sampled with a
factor of two. The output of the low-pass filter
is fed to another pair of QMFs. Consequently,
the input signal is decomposed into different
frequency subbands. The outputs of the
high-pass and the low-pass filters are called
detail and approximation coefficients, respect-
ively (Mallat, 1989; Gandhi et al., 2011). The
wavelet decomposition tree up to the fourth
level is shown in Figure 1.

FIGURE 1. Wavelet decomposition tree up to the fourth level.

250 N. SHOURIE ET AL.



In this research, the obtained wavelet coef-
ficients were used for discriminating the two
groups. In addition, some parameters of the
approximation and the detail coefficients were
used for separating the two groups. For this
purpose, the average, energy, and standard
deviation values were selected as parameters
of the obtained wavelet coefficients.

DAVIES-BOULDIN INDEX

The DBI was used for cluster validity. The DBI
is designed based on scattering matrices. For
calculation of this index, the distance between
clusters should be obtained, and then the worst
discriminability should be found for each of the
clusters. Finally, the worst discriminabilities for
all of the clusters should be averaged. The DBI
calculation procedure can be expressed as
follows:

DB ¼ 1

c

Xc
i¼1

Ri ð1Þ

where c is the number of the clusters and Rij is
the similarity between cluster i and j.

Ri ¼ max
j2c; j 6¼i

si þ sj
Dij

� �
ð2Þ

where si and sj are the scattering matrices of ith
and jth clusters. Dij represents the distance
between ith and jth clusters.

si ¼
1

Ji

XJi

j¼1
Xj � Zi

�� ��p� �1=p
Xj 2 cluster i

ð3Þ

DBI measures discriminability between clus-
ters. A lower DBI value indicates more discri-
minability between the clusters. A higher
DBI value shows more similarity between the
clusters (Davies & Bouldin, 1979). The range
of classification accuracy can be predicted by
the DBI value. In this approach, if the DBI
value is lower than 2.5, one can expect classi-
fication accuracy is more than 60%. If the DBI

value is lower than 1, then the classification
accuracy can be more than 90%.

NEURAL GAS CLASSIFIER

Neural Gas is a competitive network in that it
has no certain topology. The number of its
neurons is constant during a learning pro-
cedure. The neurons of the network are
adapted according to their distance to training
data. After training, the neurons cover the
space of the training data. For classification of
an unknown input, its distances to all of the
neurons should be calculated. The label of
the closest neuron to the unknown input deter-
mines its label (Martinetz & Schulten, 1991).

In this article, the obtained features were
divided into two groups: training data (80%)
and test data (20%). Therefore, the neural gas
network was trained by the training data. Then
the trained network was tested by the test data.

RESULTS

DBI Values Calculation

The EEG signals were decomposed by the
wavelet functions such as Daubechies (order
1–10), Coiflets (order 1–5), and biorthogonal
(order 2.4) up to the first level. The EEG signals
were related to the two groups in the at-rest
condition. The level of the decomposition
was fixed at the first level to evaluate the role
of the various wavelet functions for separating
the two groups. The calculated approximation
and detail coefficients were analyzed separ-
ately. DBI values were obtained for each of
the calculated wavelet coefficients. The wave-
let coefficient with the lowest value in the
DBI was determined for each of the tasks and
channels separately. The obtained results are
shown in Tables 1 and 2. The best channels
are highlighted for each of the considered
wavelet functions.

Accordingly, we found that the reported
DBI values were low for all of the wavelet func-
tions and channels. This means that the two
groups are discriminable by wavelet coeffi-
cients in the at-rest condition. In this case, no
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considerable changes in reported DBI values
were observed related to the various wavelet
functions. Also, no noticeable changes were
found in the DBI values of the best coefficients
for all of the channels. In addition, no consider-
able differences were observed between the
approximation and the detail coefficients for
discriminating the two groups.

Second, the EEG signals were decom-
posed using db5 up to the sixth level. The

wavelet type was fixed and the level of
decomposition was varied to observe the role
of decomposition level for separating the two
groups. The two groups were compared dur-
ing visual perception, mental imagery, and
at-rest tasks using the approximation and the
detail coefficients, separately. Hence, DBI
values were calculated for the obtained wave-
let coefficients of each of the channels and
levels among the four trials. The best wavelet

TABLE 2. The Lowest Davies-Bouldin Index Values Related to the Detail Coefficients of Each of the Channels Discriminating the Two
Groups in the At-Rest Condition

CH db1 db2 db3 db4 db5 db6 db7 db8 db9 db10 Coif1 Coif2 Coif3 Coif4 Coif5 bior2.2

Fp1 1.0108 1.0493 1.0474 0.9795 0.9286 0.9844 0.9075 0.9483 0.9451 1.0073 0.8784 1.1091 1.0679 1.0851 0.9751 0.9493
Fp2 1.0805 0.9962 1.0316 1.0745 1.0259 1.0784 0.9315 0.9108 0.9182 0.9244 0.9897 1.1268 0.9002 0.8569 1.0005 1.0177

F7 1.0536 1.0763 1.0838 1.0647 1.0730 1.0129 1.1003 1.0104 0.8453 0.9645 1.0560 0.9285 0.9543 0.9920 0.6688 0.8519
F3 0.7288 0.7549 0.6924 0.6714 0.6923 0.7561 0.9074 0.9622 0.9954 0.9482 0.6718 0.7885 0.9677 1.0481 0.8049 0.9317
Fz 0.7834 0.8528 0.7903 0.7368 0.7372 0.7398 0.8780 1.0096 0.9745 0.9257 0.8182 0.9233 0.8960 1.1706 1.0660 1.0234
F4 1.0233 1.0303 1.0655 1.1088 0.9705 1.0353 0.9862 0.9669 0.8301 0.9370 1.1333 1.0690 1.0755 0.9238 0.9823 0.9486
F8 0.8834 0.9423 0.9305 0.9125 0.8990 0.8973 1.0499 0.9309 1.0401 0.9860 0.8654 0.9397 0.9907 1.0041 0.8487 0.9903
T3 0.8593 0.9137 0.9277 0.9635 0.9766 0.8116 0.8200 0.9219 0.8733 0.7847 0.8720 1.0653 0.9845 0.9180 0.9704 0.8805

C3 1.0428 0.8652 0.8954 0.9403 0.9487 0.9908 0.9194 0.9127 1.0136 0.7681 0.9470 0.9485 1.0925 1.0671 0.8728 0.8373
Cz 1.0648 1.0208 1.0411 0.9975 1.0169 1.1041 0.9848 1.0294 0.9582 0.8429 0.9515 0.8126 0.9672 1.0494 1.0297 0.9201
C4 0.8785 0.9251 0.9336 0.9159 0.9747 0.7583 0.9408 0.8786 0.6653 0.8449 0.9579 0.9951 1.0011 0.9719 0.8825 0.9750
T4 1.0593 1.0237 1.0507 1.0759 0.9990 1.0104 0.8719 1.0045 0.9858 0.9846 0.9562 1.0048 1.0264 0.9351 1.1817 1.0602
T5 0.9362 0.9027 0.8820 0.8674 0.8685 0.9440 0.9732 0.7715 0.9256 0.8992 0.9999 0.8744 0.9626 0.6570 0.7421 0.7374
P3 0.7086 0.9842 0.9522 0.9428 0.8776 0.7434 0.7676 0.8047 0.9639 0.8471 0.8296 0.7649 0.6935 0.9452 0.9530 0.8391
Pz 0.9866 0.7369 0.7382 0.7779 0.9446 0.8962 0.9752 0.8380 0.9923 0.9048 0.9344 0.8784 0.9253 0.9897 0.9346 0.9570

P4 0.8291 0.8722 0.8743 0.9062 1.0351 0.7822 0.9664 0.8876 0.7494 0.8685 0.8568 0.9228 0.8969 0.8691 0.7769 0.9915
T6 1.0513 0.9764 0.9892 1.0452 1.0013 1.0291 0.9263 0.7681 0.7688 0.8806 0.9142 0.8605 0.8364 0.9591 0.7301 0.8832
O1 0.9519 1.0789 1.1070 1.0632 1.1030 0.9077 0.8651 0.9249 0.9951 1.0334 1.1129 1.1322 1.0489 0.9137 0.9426 0.8873
O2 0.8895 0.7063 0.7106 0.7144 0.7243 0.9876 0.8885 0.9250 1.0367 0.8547 0.6655 0.8083 0.9448 0.8398 0.8259 0.8936

Note. The detail coefficients were calculated by the various wavelet functions.

TABLE 1. The Lowest Davies-Bouldin Index Values Related to the Approximation Coefficients of Each of the Channels for Discriminating
the Two Groups in the At-Rest Condition

CH db1 db2 db3 db4 db5 db6 db7 db8 db9 db10 Coif1 Coif2 Coif3 Coif4 Coif5 bior2.2

Fp1 0.6662 0.6478 0.6795 0.7421 0.8204 0.9117 0.9820 0.7935 0.6847 0.6415 0.9171 0.9376 0.9463 0.9498 0.9508 0.9593

Fp2 0.9612 0.9978 0.9833 0.9764 0.9835 1.0121 1.0619 1.0772 1.0285 0.9766 0.9698 0.9898 0.9971 1.0012 1.0042 1.0285
F7 0.9778 0.9944 1.0387 0.9629 0.8608 0.8078 0.8041 0.8557 0.9752 1.0404 0.9645 0.9353 0.9229 0.9154 0.9101 0.9083
F3 0.9050 0.8926 0.8953 0.8921 0.8550 0.8363 0.8486 0.8779 0.9024 0.8804 0.8866 0.8881 0.8898 0.8907 0.8912 0.8858
Fz 0.9218 0.9248 0.9342 0.9415 0.9136 0.9052 0.9238 0.9461 0.9129 0.8946 0.9474 0.9515 0.9532 0.9547 0.9562 0.9300
F4 1.0583 1.0615 1.0766 1.1058 1.1270 1.0822 1.0471 1.0222 1.0076 1.0035 1.0588 1.0601 1.0626 1.0646 1.0661 1.0554
F8 0.7210 0.7486 0.8173 0.8960 0.9169 0.8946 0.8876 0.8905 0.8597 0.8033 0.8759 0.8735 0.8726 0.8724 0.8726 0.8456
T3 0.8632 0.8274 0.8320 0.7999 0.8087 0.8762 0.9615 0.9750 0.9551 0.9330 0.9538 0.9587 0.9651 0.9689 0.9708 0.9780

C3 0.9816 0.9963 0.9701 0.9239 0.8579 0.8047 0.7776 0.7857 0.8279 0.8978 0.8086 0.8039 0.8027 0.8014 0.8003 0.7853
Cz 0.9668 1.0123 0.9491 0.8648 0.8071 0.7773 0.7757 0.8023 0.8584 0.9494 0.7900 0.7825 0.7796 0.7780 0.7771 0.7562
C4 1.1449 1.1409 1.1417 1.1434 1.1478 1.1413 1.1154 1.1028 1.1069 1.1296 1.1376 1.1388 1.1382 1.1372 1.1363 1.1817
T4 0.9054 0.8440 0.7836 0.7795 0.8307 0.9333 1.0477 0.9503 0.9118 0.9166 0.9727 0.9730 0.9729 0.9730 0.9732 0.9703
T5 0.7528 0.8167 0.8122 0.7829 0.7585 0.7797 0.8536 0.8580 0.8584 0.8834 0.7978 0.8052 0.8070 0.8076 0.8077 0.7895
P3 0.8263 0.8122 0.7840 0.8051 0.8595 0.9103 0.8963 0.8782 0.8622 0.8513 0.8935 0.9051 0.9091 0.9111 0.9121 0.8643

Pz 1.0870 1.0819 1.0344 1.0134 1.0164 1.0382 1.0604 1.0485 1.0549 1.0413 1.0072 1.0099 1.0121 1.0135 1.0145 1.0055
P4 1.0824 1.0828 1.0867 1.0905 1.0867 1.0487 0.9095 0.8713 0.9075 0.9972 0.9619 0.9498 0.9496 0.9511 0.9527 0.9448
T6 1.0052 1.0437 1.0533 0.9635 0.9180 0.8919 0.8770 0.8973 0.9538 1.0494 0.9251 0.9080 0.9033 0.9022 0.9025 0.8317
O1 0.8311 0.8132 0.8206 0.8197 0.8101 0.8408 0.8826 0.8848 0.9049 0.9255 0.8823 0.8891 0.8906 0.8910 0.8909 0.9037
O2 1.0146 0.9771 0.9536 0.9468 0.9517 0.9635 0.9717 0.9912 1.0024 1.0121 1.0056 1.0134 1.0186 1.0218 1.0239 0.9743

Note. The approximation coefficients were calculated by the various wavelet functions.
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coefficients were determined for each of the
channels and levels. Tables 3 through 6 show
the obtained results.

In conclusion, we found that the two
groups are distinguishable during visual per-
ception, mental imagery, and at-rest conditions

TABLE 3. The Indices of the Approximation Coefficients With the Lowest Davies-Bouldin Index Values for Each of the Channels and
Decomposition Level for Discriminating the Two Groups During the Visual Perception Task

CH

Level1 Level2 Level3 Lelve4 Level5 Level6

Index DB Index DB Index DB Index DB Index DB Index DB

Fp1 1241 2.2770 624 2.1138 316 2.4092 189 2.7576 97 2.5374 40 3.7520
Fp2 1456 2.3179 732 2.4102 874 2.4949 441 2.7226 224 2.6897 57 4.3529
F7 2818 2.0061 1413 2.3014 710 2.2368 396 2.2444 196 2.7571 95 3.4736
F3 3391 2.4605 1699 2.4006 537 2.7173 187 3.1515 219 3.0529 52 3.8116
Fz 2499 2.3205 1253 2.4621 316 2.4542 319 2.5311 97 3.2185 37 4.0316
F4 1241 2.2898 691 2.6559 316 2.8104 319 2.9129 224 2.9458 100 3.3378
F8 1254 2.3583 1447 2.8009 160 2.8466 368 2.6604 188 2.8790 98 4.3851
T3 2691 2.2947 1827 2.5015 785 2.8539 396 2.4834 202 2.9341 115 3.9558
C3 1241 2.3351 1827 2.4658 316 2.5899 383 2.8426 195 2.5596 101 3.1913
Cz 1241 2.6463 624 2.6918 316 2.5078 187 3.1446 195 2.8118 100 2.8456
C4 1241 2.1696 624 2.3925 367 2.7927 187 2.9632 195 2.5772 100 3.0264
T4 2865 2.3936 1451 2.8355 729 2.8296 368 2.8991 188 2.8249 39 2.7160
T5 2882 2.4740 1013 2.3472 183 2.4412 181 2.7086 36 2.8009 100 2.3852
P3 1240 2.3866 624 2.3503 316 2.7792 440 3.1109 195 2.6378 100 2.2405
Pz 1240 2.4160 624 2.4829 873 2.8094 187 2.9683 195 2.4608 100 2.4895
P4 832 2.3056 1013 2.5148 510 2.5115 105 2.9233 195 2.3201 100 2.9089
T6 3094 1.9605 234 2.3809 257 2.4928 378 2.7066 195 2.5997 39 2.7550
O1 2998 2.0344 233 2.1300 120 2.3492 64 2.5524 36 2.4956 100 2.7154
O2 247 2.2413 358 2.5483 120 2.3238 64 2.6738 59 2.4777 100 2.4516

Note. The Davies-Bouldin Index value related to each of the selected coefficients is noted. The wavelet coefficients were calculated by
db5.

TABLE 4. The Indices of the Detail Coefficients With the Lowest Davies-Bouldin Index Values for Each of the Channels and
Decomposition Level for Discriminating the Two Groups During the Visual Perception Task

CH

Level1 Level2 Level3 Lelve4 Level5 Level6

Index DB Index DB Index DB Index DB Index DB Index DB

Fp1 286 1.9087 131 2.8693 126 2.3616 364 2.6994 158 2.8205 102 2.6946
Fp2 1574 2.6739 1037 2.5138 477 3.0234 197 2.1949 170 3.3936 42 2.6625
F7 2673 2.3365 58 1.9733 50 2.0368 356 2.5090 178 3.2773 102 2.2314
F3 1191 2.3521 1255 2.0933 173 2.3367 41 2.7609 202 3.4054 110 2.8914
Fz 735 2.2895 8 2.1204 173 2.5799 288 2.8956 10 3.8063 102 3.2901
F4 1286 2.5788 344 2.1943 552 2.7047 288 2.9663 10 3.4426 102 3.0505
F8 2772 2.3052 209 2.5845 276 2.6385 364 2.3656 79 2.9095 96 2.5863
T3 1153 2.5463 642 2.2240 908 2.2741 365 2.7828 82 2.8691 66 3.0617
C3 1152 2.1213 8 2.2503 535 2.6755 353 2.7974 82 3.1892 110 3.8317
Cz 1075 2.6395 806 2.1559 530 2.8078 288 3.0084 233 3.0930 27 3.4682
C4 1286 2.3563 845 2.4539 84 2.7204 13 2.9492 53 2.9664 49 3.5404
T4 2352 2.1760 1782 2.3183 577 2.2554 410 3.1316 53 2.8364 96 2.7481
T5 500 1.8693 215 2.3760 721 2.2414 371 2.5743 82 2.4592 40 3.4981
P3 1152 1.9809 819 2.7046 721 2.1715 115 2.6657 82 3.3507 30 2.8716
Pz 1056 2.2951 604 2.6053 322 2.4437 16 2.6882 160 2.9692 30 2.9350
P4 2539 2.3371 524 2.1561 322 2.2433 16 2.7161 53 2.8877 30 2.2252
T6 2496 2.1746 652 2.0829 6 2.6734 390 2.2976 53 3.0388 30 2.5305
O1 1946 2.1923 215 2.3906 721 2.3176 378 2.6015 221 3.0690 85 3.2975
O2 1567 2.0673 71 2.4861 322 2.5962 378 2.3446 177 3.0356 30 2.3487

Note. The Davies-Bouldin Index value related to each of the selected coefficients is noted. The wavelet coefficients were calculated by
db5.
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using the approximation and detail coefficients
calculated by db5. No noticeable differences
were observed between the different channels.
The reported DBI values were lower in the
at-rest condition compared to the visual per-
ception and mental imagery tasks. Therefore,
it is expected that the average classification

accuracy of the two groups at rest must be
higher. It was also found that an increase in
decomposition level was not so significant.
However, the best results were often observed
in levels of decomposition lower than 4.

Finally, the energy, average, and standard
deviation of the approximation and the detail

TABLE 5. The Lowest Davies-Bouldin Index Values Related to the Approximation and detail Coefficients Calculated by db5 for Each of
the Channels and Various Decomposition Levels for Discriminating the Two Groups During the Mental Imagery Task

CH

Approximation Detail coefficients

Level1 Level2 Level3 Level4 Level5 Level6 Level1 Level2 Level3 Level4 Level5 Level6

Fp1 2.1997 2.3262 2.4614 2.8841 2.8676 2.6501 2.5122 2.5373 2.7204 2.6153 3.1597 2.9984
Fp2 2.2842 2.2544 2.4995 2.4213 2.2371 3.0722 2.6184 2.5294 2.4274 2.7642 2.5870 2.7111
F7 2.3883 2.4759 2.5803 2.5507 2.8695 3.0790 2.1857 1.9358 2.6478 2.5786 2.8965 2.8787
F3 2.2819 2.3914 1.9941 2.8307 3.0689 3.2982 2.3458 2.4300 2.7809 2.4688 2.4864 3.1846
Fz 2.2604 2.6455 2.4476 3.1325 2.9280 3.2493 2.1137 2.3778 2.7125 2.2644 3.0492 2.9087
F4 2.4253 2.4117 2.5990 3.0112 2.3970 3.2415 2.3270 2.3514 2.5046 2.1940 2.9401 3.0493
F8 2.3557 2.5624 2.6959 2.9308 2.4688 2.8465 2.2541 2.6315 2.8816 2.5968 2.7864 2.9809
T3 2.0263 2.1138 1.8358 2.5575 2.7438 2.5350 2.3296 2.5296 2.1704 2.8178 3.6271 3.2014
C3 1.9775 2.0196 2.1697 3.0880 3.0165 3.6612 2.1260 2.6135 2.6405 2.9445 2.7962 3.2104
Cz 2.0345 2.4594 2.5506 2.4907 3.0139 3.1625 2.0971 2.1929 2.5656 2.8699 2.5565 3.5355
C4 2.3176 2.6721 2.8214 2.6110 3.0747 3.0574 2.2048 2.5058 2.1650 2.3331 2.7633 3.0755
T4 2.2057 2.5288 2.5260 3.0436 2.4191 2.7257 2.2873 2.4941 2.1076 2.1546 2.8574 3.4259
T5 1.9881 2.2342 2.0716 2.6138 2.7344 3.6414 2.0765 2.4351 2.3427 2.5550 2.5318 3.1884
P3 2.4176 2.5195 2.6076 2.3944 2.8694 4.1596 2.3393 2.3890 2.6150 2.9317 2.6703 2.5995
Pz 2.3547 2.4702 2.4627 2.6147 2.8479 3.2202 2.1437 2.1542 2.5835 2.7834 2.7056 2.7601
P4 1.9308 2.0330 2.3437 2.3241 2.4982 2.9568 2.0715 2.4911 2.2569 2.6160 2.9589 2.7882
T6 1.8330 1.7464 2.3098 2.4946 2.7159 3.0718 2.1414 2.6030 2.5975 2.6616 2.5859 3.1546
O1 1.9544 2.5938 2.4246 2.6388 3.1635 3.7782 2.7031 2.1889 2.7529 2.4233 2.3409 3.4626
O2 2.3259 2.2725 2.3874 2.7817 3.5396 3.9542 2.1550 2.6630 2.5141 2.6851 2.6604 3.5129

TABLE 6. The Lowest Davies-Bouldin Index Values Related to the Approximation and detail Coefficients Calculated by db5 for Each of
the Channels and Various Decomposition Levels for Discriminating the Two Groups in the At-Rest Condition

CH

Approximation Detail coefficients

Level1 Level2 Level3 Level4 Level5 Level6 Level1 Level2 Level3 Level4 Level5 Level6

Fp1 0.8204 0.8992 1.1779 1.2926 1.3045 1.8465 1.1091 1.0368 1.0835 1.2424 1.3593 1.3667
Fp2 0.9835 0.9140 1.1077 1.4360 1.5856 1.4427 1.1268 1.1001 1.0546 1.0877 1.2617 1.1959
F7 0.8608 1.1648 1.3401 1.2182 1.3308 1.5157 0.9285 0.9653 0.9722 1.3965 1.2358 1.2102
F3 0.8550 0.8173 1.3367 1.5253 1.4896 1.3911 0.7885 0.9536 0.9533 1.3452 1.4948 1.3576
Fz 0.9136 0.9550 1.2385 1.5182 1.4037 1.3445 0.9233 0.8540 1.2770 1.0599 1.6991 1.2004
F4 1.1270 1.1050 1.1257 1.3788 1.4304 1.0795 1.0690 1.0030 1.0624 1.0221 1.4431 1.3185
F8 0.9169 0.9472 1.1854 1.2166 1.2586 1.3515 0.9397 0.9959 1.0561 1.0878 1.0294 1.2157
T3 0.8087 0.8124 1.0739 1.1808 1.3442 1.1141 1.0653 1.0466 1.1186 1.3244 1.2759 1.4015
C3 0.8579 0.9509 1.0879 1.2016 1.2646 1.7069 0.9485 0.9607 1.1195 1.4366 1.2673 1.4656
Cz 0.8071 0.9554 1.0533 1.1053 1.3488 1.6191 0.8126 0.8079 1.1817 1.2773 1.3585 1.2760
C4 1.1478 1.1065 1.1797 1.3569 1.2243 1.3072 0.9951 1.0091 1.1029 0.9257 1.2391 1.2312
T4 0.8307 1.0510 1.0772 1.0501 1.4218 1.4218 1.0048 1.1526 1.0181 0.9783 0.9964 1.1114
T5 0.7585 0.9946 1.0642 1.1381 1.4033 1.1052 0.8744 1.0351 1.0452 1.3738 0.9457 1.4918
P3 0.8595 0.7776 0.9932 1.2617 1.0801 1.2689 0.7649 0.8376 0.8521 1.1308 0.9001 1.3102
Pz 1.0164 1.0625 1.0489 1.1064 1.0856 1.3207 0.8784 1.1371 1.2000 1.1119 0.9587 1.5919
P4 1.0867 1.0814 1.0295 1.1659 1.2617 1.6704 0.9228 1.0219 1.0838 1.2650 0.9447 1.4142
T6 0.9180 0.9462 1.1040 1.1504 1.2168 1.5023 0.8605 0.9687 1.1921 1.2484 1.0056 1.1375
O1 0.8101 1.0075 0.8458 1.1442 1.2800 1.4591 1.1322 0.7395 0.7882 1.1111 1.1290 1.5051
O2 0.9517 1.0598 0.9599 0.9870 1.4476 1.2153 0.8083 0.8743 1.2496 1.4329 1.1633 1.4354
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coefficients calculated by db5 were investi-
gated. The wavelet coefficients were related to
the two groups in the at-rest condition. The
obtained results are shown in Table 7. The best
channels are highlighted for each of the features.

As shown in Table 7, it was observed that
the two groups are distinguishable using the
energy, standard deviation, and average of
the wavelet coefficients. But, in this approach,
the separation of the two groups is dependant
on channel selection.

Classification of the EEG Signals

In this research, some of the channels were
randomly selected for classification of the two
groups. The wavelet coefficient with the lowest
DBI value was determined for each of the
selected channels. The two groups were classi-
fied by each of the determined wavelet coeffi-
cients and a neural gas classifier. The obtained
average classification accuracies are shown in
Table 8.

Table 7. The Davies-Bouldin Index Values for the Average, the Standard Deviation, and the Energy of the Approximation and Detail
Coefficients Related to the Two Groups in the At-Rest Condition for Each of the Channels

Approximation Detail coefficients

Level 1 Level 2 Level 1 Level 2

CH Mean SD Energy Mean SD Energy Mean SD Energy Level 4 Level 5 Level 6

Fp1 3.1702 19.875 40.985 3.8743 9.6799 27.492 23.533 4.4234 2.9543 4.0598 4.2880 2.9622
Fp2 3.9914 16.918 60.879 3.3760 10.346 16.654 15.480 3.5611 2.8537 131.95 4.5091 3.3999
F7 2.4913 3.1386 2.7780 2.5733 3.4397 3.0058 3.5519 3.3357 3.0447 7.2186 2.5632 2.4595
F3 4.2532 16.998 10.859 4.9411 40.768 21.575 3.9690 3.7019 3.0334 5.7424 3.6010 3.0528
Fz 5.7798 17.668 244.68 5.6917 12.639 32.163 28.571 8.9999 6.5411 8.8485 6.9950 5.1041
F4 7.0172 10.328 13.373 6.1922 7.6614 8.4754 7.1368 5.6980 4.5635 55.716 7.8598 5.5883
F8 2.1188 137.54 14.775 2.2418 4746.7 16.629 3.1773 105.02 20.611 2.7642 15.519 8.2829
T3 13.366 36.114 6.3464 13.070 6.8436 7.5767 4.4340 25.075 4.4412 394.44 5.2843 4.5765
C3 21.984 10.744 43.803 13.338 10.874 47.374 13.145 3.9757 3.8264 4.7003 15.220 39.253
Cz 62.020 28.235 16.769 35.939 21.808 19.936 24.519 10.223 14.283 16.434 17.414 8.0410
C4 8.0604 8.4691 11.924 6.5091 7.7730 10.506 7.6169 11.354 9.7217 63.342 134.02 48.086
T4 2.3694 19.265 14.280 2.2897 11.502 11.671 4.8259 13.095 28.436 4.6254 12.295 69.301
T5 72.920 4.4673 4.2435 23.072 4.7365 4.4154 2.4200 3.6024 3.5737 8.8570 4.2782 4.0786
P3 4.5649 6.7406 6.9144 5.2465 7.0670 7.0784 2.4471 2.7581 2.7968 5.3744 6.8409 8.0077
Pz 8.5638 9.0752 9.8126 12.719 8.8482 9.2779 14.544 4.5655 4.5645 21.2702 38.091 92.935
P4 216.51 4.5124 4.0804 26.120 4.5355 4.0767 7.4550 4.6180 4.3355 11.7143 7.5643 6.8391
T6 29.588 4.0322 3.8361 17.416 3.7901 3.5954 1.3831 15.748 16.6155 15.8983 14.7727 13.508
O1 2.5984 2.2831 2.2078 3.1493 2.5550 2.4432 2.7986 2.2805 2.3392 10.6160 1.8823 1.9207
O2 2.3749 3.3123 2.9281 3.4751 3.5791 3.1390 2.0773 4.2477 4.0264 10.3372 2.4897 2.2227

TABLE 8. The Average Classification Accuracies Related to the Two Groups During the Visual Perception, the Mental Imagery, and the
At-Rest Conditions for Some of the Channels Using the Selected Approximation (App) and Detail (Det) Wavelet Coefficients

CH Wavelet type Coeff type Index Task Average classification accuracy%

Fp1 Db2 App 2987 Rest 100
Cz Bior2.4 App 1249 Rest 100
T5 Db3 Det 1665 Rest 91.66
O2 Db6 Det 3060 Rest 91.66
F7 Db3 App 2819 Visual Perception 66
F7 Coif2 App 2822 Visual Perception 62.5
C4 Db3 Det 2109 Visual Perception 75
F8 Coif2 Det 2773 Visual Perception 72.91
T6 Db10 App 2955 Mental Imagery 62.5
O1 Coif1 App 1979 Mental Imagery 66.5
T4 Db6 Det 2478 Mental Imagery 62.5
C4 Coif2 Det 3308 Mental Imagery 75
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Accordingly, it was observed that the aver-
age classification accuracy is highest (100%) in
the two groups in the at-rest condition. The
obtained classification accuracies show that
wavelet transform is an appropriate tool for
artistic expertise analysis.

DISCUSSION

In this article, differences between the EEG sig-
nals of artists and nonartists were analyzed
using wavelet coefficients. It was found that
the type of wavelet function and electrode
placement is not so significant in this regard.
This is because a distinguishing coefficient
may exist among the wavelet coefficients that
can discriminate the two groups despite the
type of wavelet function and the placement
of the electrode. It was also observed that
level of signal decomposition is not significant
for separating the two groups. We also
observed that was no considerable difference
between the approximation and the detail
coefficients for discriminating the two groups
in all of the decomposition levels, which
means that both low- and high-frequency
components can be employed for separating
the two groups for each of the decomposi-
tion levels. Taking into account the afore-
mentioned points, it becomes clear that
differences between artists and nonartists can
be observed in all of the traditional EEG signal
rhythms.

It was also determined that the DBI
values are lower in the at-rest condition. There-
fore, it is expected that the average classi-
fication accuracy for the two groups must be
higher in the at-rest condition. The obtained
classification results confirmed this issue. This
indicates that discriminability in wavelet
coefficients between the groups decreases
during the visual perception and the mental
imagery tasks. This result is similar to the results
reported by Shourie et al. (2011) declaring that
discriminability in scaling exponents between
artists and nonartists is higher in the at-rest
condition compared to the performance of
similar cognitive tasks.
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