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TRANSFORMS AND CALCULATIONS: BEHIND THE MATHEMATICS
OF PSYCHOPHYSIOLOGY

George H. Green, John C. LeMay

Cerebotix Institute, Reno, Nevada, USA

There are numerous scholarly documents with accurate and thorough explanations of the
basis of the mathematical processes that have become essential to the field of psychophysiol-
ogy. Review of many of these has revealed a pervasive emphasis on the technical and theor-
etical aspects of these formulae and theories with little or no emphasis on the primary and
basic understanding of their development and application. This article specifically bridges
the gap between the introduction of several cogent mathematical concepts and their ultimate
applications within the field of applied psychophysiology, biofeedback, and neurofeedback.
Special attention is given to the distinction between transforms and calculations and some
of the statistical methods used to analyze them. Because the focus of this article is to enhance
conceptual comprehension, integral, differential, and matrix mathematics are not referenced
in any of the examples or explanations with the primary reliance on some algebra with verbal
and pictorial descriptions of the processes. We suggest a comparison to an overuse of the
black box model in which only the input and output are essential. Taking these processes
out of the black box encourages the creative application of these mathematical principles as
valuable tools for clinicians and researchers. Structured explanations emphasize the relevance
of such important concepts as aliasing, autospectrum, coherence, common mode rejection,
comodulation, cross spectral density, distribution, Fast Fourier Transform, phase synchrony,
significance, standard deviation, statistical error, transform, t test, variance, and Z scores.
The objective for providing these clarifications is to enhance the utility of these concepts.

In the years following World War II, behavioral
psychology and the field of psychology in
general received considerable attention. One
of the principles that came to be embraced
was the concept of the black box, which had
been developed in the early 20th century.
The black box was referred to in two contexts:
complex equipment and the human brain. In
both cases both the input and the output can
be observed without requiring any knowledge
of the inner workings of the box. From these
observations, inferences can be drawn about
the actual functioning of the black box and
applications can be designed to best utilize
the input–output relationship. B.F. Skinner
embraced this notion by applying it to the

human organism, which he perceived as a
black box in which internal processes are not
significant behavioral predictors (Skinner,
1938, 1953).

As the field of psychophysiology becomes
increasingly complex, the tendency to allow
increasing numbers of tools and techniques
to fall into the black box category may have
finally brought us to what can be called the
machinist’s paradox.

As technology develops, fewer people
maintain the basic knowledge and ability to
build the tools that built the machines that
subsequently built the current machines. In this
paradox the users of the newest machines are
forced to draw assumptions about the workings
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of their equipment simply because they are so
far removed from the original process. Current
computers are a good example of this paradox,
because most users are not required to possess
the knowledge necessary to build a computer.
Even most expert programmers probably do
not possess enough knowledge about the
individual electronic components to construct
a motherboard from scratch.

At this point the function of the black box
can be inappropriately extended beyond its
designed purpose to become a repository for
complex or poorly understood processes. Such
is the plight of the black box assumption.

In a controlled research environment, if the
actual functioning of a device is generally
accepted, the device may be given black box
status for the purpose of the research. What
started as a mechanism for allowing researchers
to avoid unnecessary empirical and possibly
tangentially related work, however, has
evolved into a box into which we place the
incomprehensible, the excessively complex,
and the presumably unknowable. However,
in the real world, the more you know about
how your equipment processes data, the more
effective you will be in your work. More impor-
tant, the apparent and assumed output of the
black box may not be the same as its actual
output. The only way to understand this is by
understanding the workings of the black box.

Complex mathematical principles not only
underlie the modern biofeedback processes
but are the vital blood that makes it possible.
These principles have themselves become
black boxes that are generally recognized by
name and employed enthusiastically. Unfortu-
nately, these processes may have become
poorly understood by many clinicians and
even researchers simply because the processes
seem to do their jobs so well, there is no need
to look inside them.

There are many important terms that
describe and result from the mathematical pro-
cessing of data. For example, disagreement and
confusion frequently accompanies technical
discussions involving the following terms: alias-
ing, autospectrum, coherence, common mode
rejection, comodulation, cross spectral density,

distribution, Fast Fourier Transform (FFT), phase
synchrony, significance, standard deviation,
statistical error, transform, t test, variance, Z
scores. It is possible to imagine that attempts
at using or even defining such important terms
can result in research errors, inaccurate clinical
decisions, and invalid or potentially dangerous
conclusions. These terms fall into the broad
category of ‘‘Transforms and Calculations,’’
which are elegantly practical blends of algebra,
differential and integral calculus, trigonometry,
and statistics.

The good news is that it may not be neces-
sary to study all these branches of mathematics
in order to develop an adequate appreciation
for how these numeric processes work and
what they accomplish. Instead of having to
rebuild the black box, it is possible to open it
and study the function of each piece.

DATA COLLECTION

The output of our biofeedback is only as good
as the quality of the data we collect. When pre-
paring to collect data, we are obliged to define

� Constants: the factors that are unchanging
within the study

� Statistical significance: the measure of how
likely a given outcome is to be the result of
chance (Kaplan & Kaplan, 2010)

� Independent variables: the influencing
factors to be studied

� Dependent variables: the responding factors
to be studied

� Accuracy: the degree of statistical signifi-
cance of the set of results

� Precision: the distribution of results within
the data set

� Errors: influences outside the study that can
alter the outcome

For example, in order to go to the store,
some of the constants could be (a) the distance
to be traveled, (b) the store’s employees, (c) the
store’s business hours. If these values are fixed
in relation to a study, then their influence is
considered invariable.
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The independent variables can include (a)
the weather, (b) the method of transportation,
(c) the time of day. These are the factors to
be studied that will influence the outcome.

Dependent variables can be (a) how much
you are going to buy, (b) how many of each
item you actually purchase, (c) how much time
spent chatting with a friend you bumped into.
These are the factors to be measured.

With these definitions you could design
studies such as these: ‘‘The Effect of Weather
Conditions on Purchase Quantities,’’ ‘‘Tem-
poral Discourse Adjustments in a Shopping
Environment Based on Methods of Transpor-
tation,’’ or ‘‘Distribution of Purchased Items
Measured Hourly in a 24-Hour Period.’’

Depending on the study, a constant can
become a variable, and a variable can become
a constant. If you study shopping at a variety of
stores, then which store you select is a variable.
On the other hand, if you study shopping only
in a particular store, then the store becomes a
constant.

It is possible to see how error terms or
sources of error can be inadvertently assigned
constant status or variable status. The four most
common types of error are random, which are
difficult to predict because their effect can vary
differently with each element in the study
population; bias, an error that is constant for
the defined population; Type I, incorrectly
identifying an outcome as significant (false
positive); and Type II, finding no significance
when in fact it is present (false negative;
Graziano & Raulin, 2000).

Currently the amplifiers used in electroen-
cephalograph (EEG) biofeedback have substan-
tially greater input impedance values than
were commonly found in EEG biofeedback
equipment as recently as the 1990s. Although
electrode impedance and skin preparation
have become less of a factor, they remain as a
potential source of error, which should not be
ignored. Electrical impedance can be affected
by a surprisingly large number of elements.
Many of these can be sources of error,
constants, independent variables, or even
dependent variables. These can include elec-
trode type, electrode condition, length and type

of wire, type of insulation, type and condition of
the connectors, diameter of the wire, diameter
of the electrode, age of paste, type of paste,
degree of hydration in the paste, type of skin
prep, method of skin attachment, skin type,
method of skin prep, salinity of preparation
products, chemicals that may be present in
hair or scalp from normal grooming or from
environmental influences, hair length, and type
of impedance measuring device.

With this daunting list and the newer equip-
ment characteristics, it is fairly easy to see how
impedance is at risk of becoming (or may
already be) a black box. Skin type, for example,
varies among people and contributes to error,
yet we assume it to be a constant. However, if
you are testing for differences in skin type, it is
an independent variable. If you think of skin
type as a variable but determine that the
impedance must be under a specified accepted
value, then it becomes a constant for the experi-
ment. If you ignore the impact of skin type, then
it becomes part of the error term.

Constants can be defined as unchanging
elements that influence the outcome that must
be assumed and need to be acknowledged and
reported. In a typical biofeedback experiment
the room in which the experiment is conduc-
ted is most likely a constant because defining
the numerous elements of a given room are
unnecessary if the room is essentially the same
and the elements within the room are not
changing. Similarly, if the same equipment is
used throughout the study, variables such as
operating temperature of the equipment
do not need to be reported unless those ele-
ments are being tested. Often constants are
immeasurable values that can be qualified
(identified) but not quantified (measured), so
researchers have the option to report them
within the context of error terms based on
the objectives of the study.

A constant only maintains its status as a
constant within a defined population. It may
be variable between populations and must be
redefined if the population itself is redefined.
T tests allow us to test variables against
constants in a population. By calculating the
ratio of the difference between means and
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the variability within the population, all
constants and error terms will be included with
the variability.

Variables, then, are elements that change.
Independent variables are generally the ele-
ments we are studying. Dependent variables
are the results of the study.

Once variables are identified, accuracy and
precision in data collection must be addressed.
Because error terms can have an additive or
even multiplicative impact on data, they can
introduce enough bias to invalidate an entire
data series.

In the known universe all measurements
are estimates. Accuracy itself is an estimate
based on convention. The first decision about
accuracy, therefore, is to determine the degree
of significance that is acceptable for a given set
of measurements. Significance and significant
figures are statistical terms that are determined
by the total number of digits used in measure-
ment. As a rule, the last digit of a measurement
is the approximation or estimate and is fre-
quently either ‘‘5’’ or ‘‘0’’ because it necessar-
ily is the result of rounding. The use of this digit

in calculations does not improve accuracy.
A perfectly square table can be built with a
substantially lower degree of accuracy (three
or four significant figures) than a perfectly
machined racing engine (six or more significant
figures). In either case, the value of the last digit
does not contribute to the accuracy of the
result (Brown, LeMay, & Burstead, 2006).

Accuracy, therefore, is an absolute value
that describes how close a given measurement
approximates reality. Precision is a relative
value that is reported as the standard error of
the mean. It is possible to have measurements
that are precise (small standard error) but not
accurate as well as accurate but not precise
(large standard error; Figure 1).

Most of the data collected for use in bio-
feedback are periodic in the form of waves of
electrical energy, although light and sound
spectra are also used. Working with entire
waves is ponderous and complex. By conven-
tion we reduce the wave data with sampling
that transforms the data into segments of digital
packages that are easier to manipulate and
analyze. However, correctly selecting the type

FIGURE 1. Relationship between accuracy and precision.
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and rate of sampling is basic to collecting
data that accurately represent the original
observations (Marks, 1991).

When we sample, we are essentially agree-
ing that some of the original data can be
discarded and the remaining information will
accurately represent the entire data field
(Figure 2). Reconstruction of original or missing
data is accomplished with methods of interp-
olation or extrapolation. The four simplest and
most popular forms of data reconstruction are

1. Simple linear interpolation, which deter-
mines missing data between samples by
calculating simple means;

2. Linear extrapolation, which determines
missing data outside the range of samples
by projecting data from simple means;

3. Cosine interpolation, which creates a mod-
est correction for the abrupt changes in
values at existing data points by calculating
new points along a cosine curve; and

4. Aliasing, which can occur automatically when
the sampling rate is below the resolution or
accuracy of the data and creates repetitions
of existing sampled data in the empty spaces
between samples (Harris, 2006).

Each of these techniques has strengths and
weaknesses, but none of them are capable of
bringing back discarded data (Figure 3).

The principle of aliasing provides a rational
paradigm for appreciating the limitations
inherent in working with sampling and
accuracy. Leon Harmon (1973) created one of
the first examples of pixilated oversampling
of the image of Lincoln from a five-dollar bill.
Figure 4 is a re-creation of Harmon’s original

image and takes spatial aliasing a bit further to
extreme oversampling, then shows the result
of attempted reconstruction. Curiously, if you
stand back far enough you can begin to see
the Lincoln image appear to reemerge as your
brain starts to use memory for interpolation.
However, the ambiguity of these reconstructed
data is evidenced by the fact that in the same
reconstructed image it is also possible to
see Hugh Jackman as Wolverine or Roddy
McDowall as Cornelius from Planet of the Apes.

Spatial aliasing is the insertion of accurate
data at the wrong coordinates. Temporal aliasing
occurs when accurate data are inserted at the
wrong time. The temporal aliasing effect is seen
commonly when bicycle wheels are filmed. If
the frame rate does not match both the number
of spokes and the rate of revolution of the
wheel, the wheel can appear to be moving in
reverse or even standing still. This phenomenon
is often referred to as the stroboscopic effect,
which can be demonstrated by matching the
flash rate of a stroboscope with the number of
blades on an electric fan and its speed of revol-
ution. The fan blades appear stationary while a
pencil inserted in the fan is broken.

In the temporal aliasing model frame rate or
flash rate is equivalent to sampling rate. The
number of spokes or blades is analogous to
the minimum resolution of the data, whereas
the rate of revolution is analogous to the
frequency of the waves we are sampling.

To work with the limitations of sampling
and reconstruction, the Cardinal Theorem of
Interpolation Theory was developed nearly
simultaneously by Harry Nyquist and several
others (Marks, 1991). Although the application
of the theory can be complex, it has been

FIGURE 2. Sampling rate comparison.
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reduced to a simple calculation that can be a
useful guideline for determining sampling rates
so that accurate reconstruction should always
be possible. Basically, it states that for the high-
est frequency in the original signal, the sampling
rate should be greater than twice the frequency.
A useful rule of thumb developed by the CD
industry states that the sampling rate should
be at least 2.205 times the highest frequency
(Hartman, 1997).

An audio CD has a sampling rate of 44,100
samples per second. When divided by the
Nyquist approximation of 2.205, this yields

20,000Hz, which is the highest frequency that
is usually included in audio recordings. Pro-
fessional recording studios generally sample
performances at 48,000 samples per second
so that after editing they are still above the
44,100 value. When they finally reduce it to
44,100 samples per second, the recording
sounds like a perfect audio reproduction,
which is essentially an accurate reconstruction
of the original analog data.

For the purposes of EEG biofeedback
based on Nyquist’s approximation, an 8Hz
wave should be sampled at a minimum of 18
samples per second. Similarly, a 30Hz wave
should be sampled at 67 samples per second
or better. A 48Hz wave should be sampled
at 106 samples per second or better. If we con-
sider that sample rates of 256 samples per
second are considered the minimum recom-
mended standards for EEG biofeedback, then
application of Nyquist’s approximation indi-
cates that data collection up to 116Hz should
be accurate (Sanei & Chambers, 2007).

TRANSFORMS AND CALCULATIONS

Transforms in mathematics are methods of
modifying the basic structure of a data set to
make it easier to analyze. Technically, these
are active transforms because the data set is
rearranged to new coordinates. Passive trans-
forms are shifts in perspective or changes in
vectors. These shifts can be made without

FIGURE 3. Some methods of data reconstruction.

FIGURE 4. Example of oversampling.
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influencing the data coordinates directly.
Within the context of digital sampling, the
aliasing process involves active transform. Pass-
ive transform, which is accomplished by shifted
vectors (altered perspective), has been assigned
the term alibi. If aliased data are the placement
of real data in a contiguous but incorrect
location, then alibied data are real data that
are perceived from a different and possibly
incorrect perspective (Figure 5).

Once analyzed following active transform,
the data set can be restored to its original
domain by the inverse transform. The data do
not change; only the coordinate system
changes, which then provides new methods
of analysis. Transforms in mathematics are an
extensive and powerful collection of tools that
allows us to analyze data sets in a variety of
quantifiable ways. These tools permit obser-
vation and measurement of data relationships
that might otherwise require far more complex
methods of analysis or possibly escape dis-
covery and measurement entirely.

In contrast to transforms, calculations use
mathematical computations to determine a
result. Interpolation and extrapolation are both
examples of calculations. When working with
EEG data, several types of transforms are
employed in order to represent the data in
such a manner that we can calculate treatment
effects and other phenomena. Calculations
provide new information, whereas transforms
provide new perspectives on existing data.

SOME BASIC TRANSFORMS

Most aspects of biofeedback involve the use of
transforms. To analyze raw EEG data, transforms
are used to allow us to identify characteristics

that would be difficult or impossible to work
with in their original form. Even the graphical
user interface, which provides the visual link
essential to most types of biofeedback, depends
heavily on transforms. Information that is ren-
dered as images in three-dimensional space is
entirely a product of mathematical transforms.
Even simple bar graphs or two-dimensional
images are transformative of the calculated data.

Examining four of the basic transforms will
provide a valuable starting point for a more
detailed understanding of EEG data modifi-
cation. These basic transforms are translation,
reflection, scaling, and rotation. These four
can be supplemented by numerous more
complex transforms that allow a variety of data
perspectives in wave analysis. The Log Base 10
transform is demonstrated in Figure 12.
Additional transforms that are frequently refer-
enced in the literature include Euler, Laplace,
Bessel, Radon, Gauss, Gabor, Zak, Box-Cox,
square root, cube root, and hyperbolic arcsine,
each providing a unique method of exploring
data (Sanei & Chambers, 2007).

The translation transform can be expressed
mathematically as

ðx0; y0Þ ¼ ðxþ X; yþ YÞ

To use the translation transform, simply
slide the data intact along a single Cartesian
axis in one direction (Figure 6). You are adding
or subtracting a single value from one axis.

Imagine driving in a car. Your movement
down the street is a translation of data in the
set that includes your car and its contents.
You are adding or subtracting a single value
from one axis.

FIGURE 5. Example of passive transform.
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The reflection transform can be expressed
mathematically as

ðx0; y0Þ ¼ ð�x; yÞ ¼ ðx;�yÞ

The reflection transform changes your
orientation on one axis by changing your sign.
Positive becomes negative, and negative would
become positive (Figure 7). If you were head-
ing east, then after the reflection transform
you would be heading west.

The scaling transform can be expressed
mathematically as

ðx0; y0Þ ¼ ðmx; myÞ where m > 1

¼ dilation and m < 1 ¼ reduction

The scaling transform includes the charac-
teristics of reduction and dilation and is
accomplished by multiplying your Cartesian
coordinates by a single value (Figure 8). Using
the car analogy, you and your car would be

FIGURE 6. Example of the translation transform for data subset y> 0, x0 ¼ x � jxj=2.

FIGURE 7. Example of the reflection transform for data subset y<0, y0 ¼�1(y).

FIGURE 8. Examples of the scaling transform for data subset y<0: for uniform scale, x0,y0 < x,y; for nonuniform scale, x0 < x, y0 > y.
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expanded or miniaturized. If the scaling value
is different for each coordinate, the scaling
transform is no longer uniform because the
relationship between all elements in the data
set is not maintained.

The rotational transform is another matter.
Because the data set is being modified in spa-
tial orientation, the transform involves three-
dimensional coordinates. Furthermore,
because the reorientation is rotational, this

transformation requires adjustments made
based on angular changes.

x0 ¼ xðcos hÞ � yðsin hÞ
y0 ¼ xðsin hÞ þ yðcos hÞ
z0 ¼ f1; 0;0g ¼ z

In this case polar movement (rotation
around a specified axis) occurs as the data set
is fixed to a single axis (‘‘z’’ in the prior example),
whereas the values of the other two axes are
allowed to change. Cosine values of the angle
of change provide the two-dimensional rep-
resentation of the circular spatial movement
around the stationary axis, which acts as the ori-
gin for this portion of the transform. Hence, mul-
tiplying a Cartesian value by the cosine of the
angle of change generates one two-dimensional
image of the data. When you have generated
this value for two coordinates, piecing them
together provides the three-dimensional spatial
data, which can be demonstrated by observing
the shadows cast at 90� by a helix (Figure 9).

FIGURE 9. Application of sine and cosine functions in the
analysis of periodic data.

FIGURE 10. Examples of rotational transforms for data subset y<0.
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If you perform this transform for each of the
three coordinates, the result will be a complex
spatial transformation (Figure 10). Because all
motion is relative to some object, all objects
are in a state of dynamic translation. In addition,
all movement is influenced by a variety of
gravity fields and other forces, which make
the concept of a perfectly straight line limited
in application. Consequently, all objects are
subject to continuous rotational transformation
and spatial curvilinear translation. Understand-
ing and accurately analyzing these complex
movements requires mathematics beyond
geometry and trigonometry (Shoemake, 1994).

Three other basic transforms are commonly
employed: the stretch=squish transform, the
shear transform, and the logarithmic transform.
The stretch transform increases dimension

along a single axis while having no influence
on the other perpendicular dimensions. A
square or rectangle would transform into a
trapezoid. The shear transform describes the
linear translation of a single side of an object
along its axis such that the resultant figure
retains the initial relationship of opposing sides
while transforming the relationship of adjacent
sides. In this case, a square or rectangle would
be transformed into a parallelogram of the
same area (Figure 11).

The logarithmic transforms allow data sets
that contain one or more expanding variables
to be plotted on a linear map. Values that are
multiplicative, exponential, and percentage dis-
tribute in nonlinear fashion. Log transforms con-
vert these to values that are additive and more
readily subject to analysis. Figure 12 shows both

FIGURE 11. Examples of the stretch and shear transforms for data subset y< 0.

FIGURE 12. Example of the logarithmic transform of the first 50 values in the Fibonacci sequence.
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the linear plotting and the logarithmic plotting of
the first 50 numbers of the Fibonacci Sequence
as defined by the linear recurrence equation:

FðnÞ ¼ Fðn� 1Þ þ Fðn� 2Þ:

Once data have been transformed onto a
linear map, they can be analyzed by linear
regression and correlation. Even a simple
regression—the best straight line you can make
through your data—can provide a valuable new
perspective as in Figure 13.

Understanding the distinction between
regression and correlation is essential to the
data interpretation process because these
are powerful tools. Correlation (r) is predictive
because you are calculating the relationship of
the data to the regression line by determining
the likelihood that the data will fall along that
line. Correlation coefficient values range from
�1 for an inverse proportional relationship
to þ1 for a direct proportional relationship. In
Figure 13, note the differences and similarities
between the paired graphs.

If the r value is squared, r2, the result math-
ematically is referred to as the Coefficient of
Determination and is restricted to a range of 0
toþ1. An r2 value of 0 indicates no relationship
between the data and the calculated regression
line. An r2 value of þ1 indicates that the data
and the regression line are identical. The equa-
tion for r (Figure 14) becomes logical when it is
reduced to its elements.

In other words, the correlation coefficient
(also referred to as Pearson’s correlation) repre-
sents the amount that the two variables change
together (covariance) when compared against
their dispersion around the mean. Another
way to phrase that could be the amount of
the dispersion coming from the relationship
between the two variables.

FIGURE 13. The correlation, regression, and mean relationship.

FIGURE 14. Formula for correlation coefficient.
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USING TRANSFORMS AND
CALCULATIONS TO IMPROVE THE
NEUROFEEDBACK PROCESS

The specific method of completing the infor-
mation loop that creates the feedback is based
on reward systems, which themselves are
determined by calculations. The presentation
of psychophysiologic information in the form
of biofeedback uses the analyzed data and cal-
culates a data stream that will be transformed
into usable information by means of some sort
of display apparatus. The nature of the display
signal can be visual, auditory, and=or tactile
and will drive the display in either an analog
or binary manner. Analog or proportional signals
are presented as a continuum of data, whereas
binary signals are restricted to either the ‘‘on’’
state or the ‘‘off’’ state. This section addresses
the calculations that produce the signals that
drive the biofeedback.

Earlier in this article several terms that either
use or embody transforms and calculations
were identified as potential candidates for
inadvertent black box status. In essence the fol-
lowing terms are the mathematical building
blocks on which the field of biofeedback rests.

Distribution

For our purposes, distribution is a shortened
form of the term ‘‘probability distribution’’
and describes the likelihood that a variable will
fall within a specified range around a mean
value. The two most commonly referenced
distributions are Gaussian and categorical.
Gaussian distribution is also known as normal
distribution and is characterized by its familiar
bell curve graph. Approximation to a Gaussian
distribution has been established as one of the
standards for QEEG (Thatcher & Lubar, 2009).
Categorical distribution describes the likelihood
that a single event will have a specific result. A
good example of this is coin tossing. A categ-
orical distribution of one to two means that a
given side of the coin is expected to show once
for every two tosses.

Consider the following equation (Figure 15):
Calculating the standard error of the mean—

which itself is arguably the most routinely

employed statistical tool—is traditionally taught
as a reasonably simple recipe. However, it has
also fallen into the black box along with its
component elements. In fact, these elements
are often employed individually without neces-
sarily acknowledging their interrelationship or
the value of that interrelationship. The following
four steps construct the calculation of the stan-
dard error of the mean.

1. Sum of squares (SS)¼ {Rx2 – [(Rx)2=n]}: This
value is describing the dispersion around
the mean by calculating how far each sam-
ple is from the mean. By squaring this value
two qualities are added: (a) negative values
are removed, and (b) larger differences are
amplified (transformed).

2. Variance, r2¼ SS=n (or s2¼ SS=n-1): This
value is the SS calculated down to the level
of the mean, which allows it to be a useful
comparison tool by describing population
variation away from the mean. The distinc-
tion between r2 (sigma squared) and s2 is
that r2 is calculated when working with
the values for an entire data set. By calculat-
ing s2 with (n� 1) as the denominator, the
variance will be larger and will compensate
for calculations made using an incomplete
data set.

3. Standard deviation, r¼p
r2 (or s¼p

s2):
The square root of the variance provides
the basis for the distribution curve around
the mean by returning the value to the mag-
nitude of the population of samples found
in the original data. When this value is
added and subtracted from the population
mean, the values contained within that
range will account for 66.7% of the total
population assuming that the data have a
normal distribution.

FIGURE 15. Standard error formula.
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4. Standard error¼ (s =
p
n): Reported generally

after a mean value and preceded byþ=– the
standard error provides the standard devi-
ation for a particular sample. Dividing by
the square root of the sample size removes
it from the population range and places it
in the sample range. A quick and simple
statistical test of significance between two
samples is to subtract the standard error from
the larger one and add the standard error to
the smaller one. If the resulting values over-
lap, the general rule is that the difference is
probably not statistically significant.

Many statistical tools are based mathemat-
ically on ratio relationships that, when phrased
in words, can clarify both function and applica-
bility. A ratio is often written as a fraction, such as

A=B

Beyond the mathematical phraseology for this
term—A over B, A divided by B, ratio of A to
B—are more descriptive phrasings that describe
the nature of the relationship between the two
values. The three most common phrasings are

1. the number of times B fits into A,
2. the amount of B represented by A, and
3. how A changes or varies with respect to B.

As some of the more complex terms are
defined, because they are based on ratio calcula-
tions, this more descriptive language should help
define their identities and applications. Figure 14
is a good example of a useful ratio relationship in
the calculation of the correlation coefficient, r.

Z Scores and the t Test

Z scores and the t test (Figure 16) are two of the
most often applied of the dimensionless ratios.
Dimensionless ratios are those in which the

units of measurement are the same for the
numerator and denominator such as the corre-
lation coefficient. Mathematically, the units
cancel out, which leaves a numeric value with-
out a unit of measurement. These two tests are
essentially identical in terms of their algebra.

For Z, x is a raw score to be standardized, l is
themean of the population, and r is the standard
deviation of the population. For t;�xx is the mean
of the subset, and s is the standard deviation of
the subset which sometimes is substituted with
the standard error. Both statistics calculate how
a sample value varies from the mean when com-
pared to the relative dispersion of the data set.

The Z score assumes the data set includes
the entire population or that the true popu-
lation parameters are known. Because it deals
with entire populations of data, the Z distri-
bution is considered the same as the normal
distribution, and both extremes—called tails—
extend to infinity. The one-tailed Z test defines
significance in direction such as determining
whether the sample is larger than the popu-
lation mean. The two-tailed Z test defines sig-
nificance in difference only without specifying
direction. The t test compares the sample with
a known subset of the population that may
not represent the entire population. Because
the t test uses incomplete data, the t-distribution
is frequently not normal.

The values generated by both the Z and the
t provide an estimate of statistical significance
when compared to their respective distribu-
tions and adjusted for sample size.

PREPARATION OF PERIODIC DATA
FOR BIOFEEDBACK

Because EEG signals are complex periodic data
(i.e., data in the form of complex waves), a var-
iety of transforms and calculations reduce the
signal complexity to the final analog or binary
output needed for conversion to biofeedback.
The simplest waveform is referred to as a sine
wave, which is recognized by its characteristic
smooth uniformity. Determining the sine of an
angle is as appropriate for calculating degrees
of arc as it is for calculating the characteristics
of a right triangle.FIGURE 16. Formulae for Z scores and t test.
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By applying trigonometric functions to the
analysis of periodic data, mathematical descrip-
tions of waves and their components can be
readily derived. Because a wave is periodic in
nature, such repetition can be analyzed with the
same tool used to analyze circular information.

Figure 17 illustrates the relationship between
a circle and both sine and cosine waves. In the
example the radius of the circle is also the hypot-
enuse (h) of the angle, h, of a right triangle.
Notice that the adjacent arm (a) of the triangle
corresponds to the x-coordinate of the hypoten-
use, and the opposite arm (o) corresponds to the
y-coordinate. Because the sine of h equals the
ratio of the opposite to the hypotenuse, the sine

is a calculation of the y-coordinate. The cosine of
h equals the ratio of the adjacent to the hypoten-
use, which means that it is a calculation of the
x-coordinate. When the sine and cosine of the
angle are plotted against the size of the angle,
the familiar waveforms are the result. These rela-
tionships are the basic tools that allow detailed
analysis of EEG data.

THE FOURIER TRANSFORM

Of all the mathematical discoveries that have
benefited EEG research, perhaps the contribu-
tions of Joseph Fourier (1768–1830) have had
the greatest impact. Indeed, the Fourier
Transforms may have made the field of neuro-
feedback feasible. Fourier conceptualized
reduction of waves into component data repre-
sented by series of sines and cosines. His math
made it possible to analyze waveforms with both
accuracy and precision. The Fourier Transform
reorganizes a wave signal into a format in which
the individual frequencies can be analyzed.

Periodic data are comprise three domains:
time, amplitude, and frequency. Normally,
data are collected as a function of time, which
means that the data set is in the time domain.
By transforming the data to the amplitude
domain, we can quantify and display ampli-
tude data (Figure 18).

By transforming the data to the frequency
domain (Figure 19) it is possible to calculate
the characteristics for given frequencies. Energy
can be described as the variance of the fre-
quency, and power can be defined as energy

FIGURE 17. The sine–cosine relationship.

FIGURE 18. Transform from time to amplitude domain: y0 ¼�1(y); 2) x0 ¼ x=m; 3) z0(sinh)¼ z(cosh).
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per unit of time. When the wave data are
transformed from the time domain into the
frequency domain, this representation is com-
monly referred to as spectral density and repre-
sents the mathematical description of the
power distribution in relation to frequency.

From the frequency transform both the
autospectral density and the cross spectral
density can be determined. The autospectral
density value is calculated as variations in the
power spectrum across time. The cross spectral
density is calculated as variations in the power
spectrum between waves.

Figure 20 further illustrates the basic Four-
ier Transform process. Technically, Figure 20 is
calculating the Discrete Time Short Time Fourier
Transform because each Fourier Transform is
extended into a discrete time packet.

The Fourier Transform as it is applied to EEG
analysis has two predominant formats: discrete
and fast. The discrete transform works with a
defined sample of a larger signal. The amount
of data in a given signal is substantial and can
involve literally millions of mathematical opera-
tions that can become ponderous. The FFT
recognizes that for a finite signal sample, the
actual number of operations required to be able
to rebuild the original data set can be signifi-
cantly less. The original number (N) of operations
(O) required is O(N2), whereas the reduced
number is O(N=logN). Numerically, for a set of
1,000 samples, this would reduce the operations
from 1,000,000 to 333 (Reddy, 2005).

The familiar output of the Fourier Transform
is the Continuous Time Short Time Fourier Trans-
form spectral display, which is often referred to

FIGURE 19. Transform from time to frequency domain: y0 ¼�1(y); 2) x0 ¼ x=m; 3) calculate frequency bins.

FIGURE 20. Graphic representation of an interpretation of a Fast Fourier Transform.
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as a spectrogram. This output device allows
inspection and analysis of EEG data with the
emphasis on the frequency–amplitude relation-
ship as it changes across time (Figure 21).

COMPARING WAVES

Once we have analyzed the EEG waves within
the parameters of study, it is generally desirable
to compare EEG activity between various sites.
To accomplish this comparison, another set of
mathematical tools is employed that allows
us to create new data sets by combining
information from more than one location.

Figures 9 and 17 illustrate the principle of
measuring periodic data as degrees of a circle.
As periodic information passes through positive
values to negative then back to y¼ 0, it will
have passed through 360� of arc. Phase syn-
chrony as it applies to EEG describes the differ-
ence along the time axis between two waves.
The relative position of one wave is calculated
as degrees of arc around a circle ahead of (þ)
or behind (–) the other wave (Figure 22).

One of the most useful mathematical tools
for comparing wave data and indeed for
comparing any data sets is the use of the math-
ematical ratio. The basic ratio model that most
ratios used in neurofeedback follow is the
ratio of differences. All ratios that depend on
this characteristic use some variation of the
relationship that defines the differences
between two data sets relative to the combi-
nation of the two data sets. In fact, this rela-
tionship has already been introduced in this
article. The Correlation Coefficient (r;
Figure 13) and both the Z scores and t test
(Figure 16) are applications of this principle.

FIGURE 21. Power spectrum as Continuous Time Short Time
Fourier Transform. (Color figure available online.)

FIGURE 22. Examples of phase synchrony.
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Common Mode Rejection is one of the
ratios on which we depend in EEG biofeed-
back. In fact, the complete term is Common
Mode Rejection Ratio (CMRR). The mathemat-
ics can be represented as follows:

CMRR ¼ 10 log10ðAv=AcmÞ2

Av is the differential voltage gain, and Acm is the
common mode voltage gain. As this ratio of
squares gets larger, the signals common to the
two electrical outputs will be attenuated while
the signals that are different will be amplified.
The CMRR for biological data is typically greater
than 1000:1. By calculating the CMRR as a log
value, the large variations found in EEG data
can be represented by smaller numbers.
Because the CMRR is a ratio of exponents
(squares in this case), the unit of measurement
is the decibel. A CMRR of 1000:1 would be
þ30 dB. With modern operational amplifiers
CMRR values of þ80dB are possible and desir-
able (Sanei & Chambers, 2007).

Inherent in EEG biofeedback applications
is the placement of active electrodes, reference
electrodes, and ground electrodes. The func-
tion of the reference electrode is to provide a
passive measurement that is subtracted from
the activity moving from the active electrode
to the ground. The common mode rejection
ratio is used to eliminate unrelated data by
subtracting out information that we relegate
to the category of ‘‘noise.’’

By comparing the function of electrodes to
a soccer game, we can let the two teams
represent active electrodes and the referee
represent the reference. Because the referee
is in the middle of the game, his observations
of the actions of the players are assumed to
be accurate. If we consider the boundaries of
the playing field to be the equivalent of the
ground electrode, then it is possible to identify
the function of the ground. The ground is
essential for the actions to be completed (a goal
or out of bounds), and the reference is the
standard against which the actions are
measured. Were the referee placed anywhere
other than on the field, his measurements
would be suspect at best if not inaccurate.

If the referee has good stamina and a good
understanding of the game, then his similarities
to the players make his observations more
reliable. However, if the referee had no prior
soccer experience and was physically out of
shape, these differences from the players
would introduce additional factors into his
observations reducing his accuracy. In this case
the CMRR would be low. For CMRR a higher
value is desirable and a lower value indicates
a greater amount of ‘‘noise’’ in the signal.

Comodulation is another valuable appli-
cation of the ratio principle for analyzing EEG
data. An exceptional definition of comodulation
was offered by Jacobson (2008): ‘‘Comodula-
tion refers to the property that for a given
source, there are likely to be relationships
among its spectral components, such that they
will start=stop at the same time and will rise=fall
in amplitude and increase=decrease in fre-
quency at the same rate’’ (p. 19). Essentially,
the principle of comodulation is that one of
three conditions will be analyzed: (a) Spectral
components of two waves will start and stop,
(b) amplitudes will rise and fall, or (c) fre-
quencies will increase or decrease together.
Consequently, there are several types of
comodulation possible. Researchers have
employed amplitude-phase comodulation as
well as phase-phase comodulation. The form
commonly referenced in EEG literature is ampli-
tude-amplitude power comodulation and is
generally reported as a correlation coefficient
(Shirvalkar, Rapp, & Shapiro, 2010).

Collura (2008) noted the similarity
between the equation for comodulation and
Pearson’s correlation while pointing out that
the comodulation measurements are ‘‘ampli-
tudes across time.’’

Coherence is somewhat more complex in
theory. Collura presents an excellent working
definition of coherence. Basically, it is the ratio
relationship between cross spectral density
and the autospectral density as previously
described. The calculation of spectral density
utilizes FFT values to provide a numeric
description of the similarity between waves of
individual frequency characteristics compared
to the behavior of waves with those same
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characteristics across a defined period. It is
important to note that two waves with mor-
phological similarities that make them highly
coherent may also have low phase synchrony
as well as low comodulation. These three
factors are separate calculations that define
unique properties.

The final analytic tool in this article is a
remarkably valuable application of the ratio
relationship called the Bray Curtis Dissimilarity
(Bray & Curtis, 1957). This simple ratio pro-
vides two useful functions when comparing
two sets of data: It creates a set of normalized
values, and it establishes a unique index of
dissimilarity for each pair of data sets. In its sim-
plest form the equation describes the amount
of difference found in a unified data set:

BCD ¼ ðA� BÞ=ðAþ BÞ

The normalized values fall between 0 and 1, with
0 indicating no dissimilarity and 1 indicating
complete dissimilarity. If the values range
between 0 and�1, this indicates that the second
value (B) is weightedmore heavily than the first. If
weighting is not a consideration, then use absol-
ute values in the numerator. If percentage of dif-
ference is required, multiply the BCD by 100.

Determining the characteristics of a defined
difference as it relates to the combined field of
two data sets is in essence the objective of a
substantial portion of mathematical analytic
techniques. Although the complete understand-
ing of all the mathematical formulae involved is
outside the scope of many researchers and clin-
icians, grasping the general principles allows the
knowledgeable implementation of many won-
derful tools in potentially creative applications
that removes the shadowy darkness from the
realm of many black boxes.
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