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SINGLE-CASE DESIGN IN PSYCHOPHYSIOLOGICAL RESEARCH:
PART II: STATISTICAL ANALYTIC APPROACHES

Dwight E. Waddell, Stephanie L. Nassar, Scott A. Gustafson

The University of Mississippi, University, Mississippi, USA

This article is Part 2 of a two-part series on the conceptual and methodological applications
of single-case design research in psychophysiological research (Gustafson, Nassar, &
Waddell, 2011). Part 1 in this series presented the context, structure, and fundamentals of
single-case design in relation to psychophysiology. Part 2 introduces four statistical analyses
that are utilized in single-case research design and are broadly applicable to a wide range of
research questions or clinical outcome studies. These techniques are reviewed in sufficient
detail so that clinicians and researchers may apply them in real-world contexts. The following
analyses—(a) Percentage of Non-overlapping Data Points and Percentage of All Non-
overlapping Data, (b) Split-Middle and Percentage of Data Points Exceeding the Median,
(c) Improvement Rate Difference, and (d) Hierarchical Linear Modeling—were chosen for
their suitability with psychophysiological data. Although these analyses may be unfamiliar,
their calculations are quite straightforward. Special emphasis is given to statistics that
provide effect size data, as this statistic allows studies to be incorporated in to meta-
analytic studies, promoting cumulative knowledge across time.

In Part 1 of this two-part series, the conceptual
and methodological applications of single-case
design research methodology were examined
in detail (Gustafson, Nassar, & Waddell, 2011).
The current psychophysiological research para-
digm of large-scale, group comparison designs
may not be the best conceptual fit for studying
psychophysiological phenomena. Clinical psy-
chophysiology employs the reinforcement of
successive, incremental changes of specific
behaviors, such as producing greater amplitude
of a particular electroencephalographic (EEG)
bandwidth. The nature of this intervention is
closer to operant conditioning and physical
rehabilitation than the commonly used standard
pharmacological model, which employs large
total sample size, group comparison designs.

To review briefly, single-case design allows
researchers and clinicians to make reasonable
determinations about the efficacy and the

effectiveness of particular interventions using
a small number of experimental subjects. The
foundation of this design is determining cause
and effect by obtaining a preintervention
baseline, systematic sampling during active
intervention (such as neurofeedback), and
implementing either a reversal or recording
without feedback phase (Figure 1).

The resulting data stream contains many
useful features, such as the angle of change
from one phase to the other, the magnitude
of change, the number of sessions required
for observable changes to take place, and the
effects of withdrawing feedback or instituting
bidirectional training. Visual inspection of the
data is often clinically informative, but the
gathering of data points that are connected to
each other in time and in sequence presents
a set of analytical challenges that may be
unfamiliar to some clinician-researchers.
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TIME SERIES DATA AND
NONPARAMETRIC ANALYSES

One of the primary issues that can act as a bar-
rier to clinician-scientists utilizing single-case
design is the problem of how to statistically
analyze the data. It is perhaps the most confus-
ing, daunting, and disjointed element of this
experimental method. As a matter of fact, until
very recently there has been an active debate
whether statistical analyses are even necessary
for this kind of data, with some arguing for sim-
ple visual inspection of the data rather than
performing mathematical analyses (Kazdin,
1982; Parker, Hagan-Burke, & Vannest,
2007). There is a growing consensus, however,
that the inclusion of quantitative analyses holds
many advantages, including increased
reliability of results reporting, reduction of
Type I and Type II errors, greater discrimi-
nation of treatment effects, and greater confi-
dence in conclusions about cause and effect
(Franklin, Gorman, Beasley, & Allison, 1996;
Parker, Hagan-Burke, & Vannest, 2007).

Even when one acknowledges the need for
empirical analyses, there is a confusing array of
potential analytical approaches, formulae, and
debate about the appropriateness of certain
statistics in certain situations (Jones, 2003;
Parker & Brossart, 2003). This is largely due
to the unique nature of the data. Single-case
design entails sequential observations over
time, generally to determine incremental
changes in behavior as a result of a specific
intervention (Gustafson et al., 2011).

It is by nature a time-series data set, which
means that the data points will be serially
dependent. In other words, each data point in
the series is correlated with the next data point,
allowing for an amount of prediction from one
measurement epoch to another. The extent of
this predictability can be determined by exam-
ining the data’s autocorrelation: the degree to
which the data correlates with itself over
sequential time intervals (Kazdin, 1984).

Serially dependent data make statistical
analysis somewhat unusual in that they violate
the Independence of Error assumption. This is
one of the few violations of assumptions to
which parametric statistics, such as analysis of
variance (ANOVA) and correlation, are not
robust (Borckardt & Nash, 2002). To better
understand the context for this limitation,
remember that statistics based on the General
Linear Model (such as ANOVA, correlations,
etc.) require random or independent samples
from a population. This generally results in
observations that fall along a normally distribu-
ted curve. Autocorrelated data, being taken
serially, share variance and error from one sam-
ple to the next. The resulting data will not be
normally distributed. Gaussian distributions
are a fundamental underlying assumption of
the General Linear Model. This effectively rules
out most parametric statistics, which are the
exact analytical techniques most clinicians
and researchers are trained to conduct.

Fortunately, there has been a great
increase in the availability, ease of use, and
sophistication of nonparametric analyses within
the past 10 years that are directly applicable to
single-case design data sets (Jenson, Clark,
Kircher, & Kristjansson, 2007). These nonpara-
metric statistical analyses vastly increase the
researcher’s ability to examine experimental
significance, clinical significance, and effect
size of a clinical intervention. The inclusion of
effect size indices, contained in most recent
analytical approaches, facilitates the ability of
independent researchers to conduct meta-
analytical techniques, which compounds an
individual study’s contribution to the scientific
literature (American Psychological Association
[APA], 2001; Campbell, 2004).

FIGURE 1. Data from a standard single-case A=B=A=B design.
Note. Baseline indicates no feedback. Intervention indicates
operantly reinforcing beta amplitude, withdrawal indicates
recording without feedback and intervention demonstrates a
continuation of the intervention.
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FOUR STATISTICAL TECHNIQUES

There is a wide variety of nonparametric stat-
istics from the very basic to the very sophisti-
cated (Hays, 1994). Four statistical techniques
are presented here, chosen for their direct
applicability to psychophysiological research
and appropriateness for a broad range of
experimental designs. Although the following
statistical techniques have rather simple calcu-
lations, they have been demonstrated to be
better suited to single-case design data sets
than a number of more sophisticated techni-
ques. They are more robust to serial depen-
dency effects, are more sensitive to changes
in effect size (Manolov & Solanas, 2008), and
have greater statistical power compared to
parametric analyses (Jenson et al., 2007).

Perhaps their greatest advantage over
other potential analytical approaches is that
three of the four techniques presented here
allow for calculation of the effect size statistic.
This statistic is a clinical tool to estimate the
relative magnitude of treatment effects across
studies (e.g., the degree to which an inter-
vention exerts change on a target behavior).
The effect size statistic also makes the results
of the study eligible for inclusion in meta-
analytic research, which is a critical component
of empirically demonstrating fidelity of treat-
ment approaches across time and situations
(APA, 2001; Campbell, 2004).

These approaches have been endorsed
by recognized experts in scientific design
that range the methodological spectrum from
visual inspection without quantitative analysis
(Kazdin, 1982) to meta-analysis (Kavale,
Mathur, Forness, Quinn, & Rutherford, 2000).
In addition, the calculations are so straightfor-
ward, they usually do not require specialized
statistical software.

These techniques are uniquely well suited
to psychophysiological research and are rela-
tively straightforward to understand and
employ. The following review presents a selec-
ted cross-section of four of the most useful
and accessible techniques: Percentage of
Non-overlapping Data Points (PND) and Per-
centage of All Non-Overlapping Data (PAND),

Split-Middle and Percentage of Data Points
Exceeding the Median (PEM) Methods,
Improvement Rate Difference (IRD) analyses,
and Hierarchical Linear Modeling (HLM).
These empirical techniques are presented in
enough detail (i.e., step-by-step instructions
and demonstration graphs) as to allow the
clinician-researcher to conduct these analyses
with his or her own unique single-case design
data sets. To enhance the readability and com-
parison of these four statistical techniques, the
authors have elected to employ the same elec-
troencephalographic dataset (Figure 2) for each
calculation.

PND AND PAND

PND (Scruggs, Mastropieri, & Casto, 1987) and
its variant, PAND (Parker et al., 2007), have
emerged as two of the most common statistical
approaches to single-case design (Scruggs &
Mastropieri, 2001). Both are straightforward,
are simple to calculate, and provide meaning-
ful results.

PND and PAND are predicated on the
assumption that the difference between the
baseline phase and intervention phase of a
single-case design will be of sufficient magni-
tude to ensure that data points will not signifi-
cantly overlap. The lowest point during a
treatment phase is expected to be generally
higher than the highest point of the baseline
phase (Figure 3).

FIGURE 2. Alpha-enhancement Model Dataset. Note. All the
statistical techniques presented in this paper utilize this model
dataset for conceptual clarity and comparison among techniques.
The data presented are of an actual neurofeedback training
protocol conducted for the purposes of this article.
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The calculation method for PND is simple:

1. Calculate the number of Intervention Phase
observations, or data points, that are of
greater magnitude than the highest data
point in the Baseline Phase:
Example results: 10

2. Divide this value by the number of observa-
tions in the Intervention Phase (resulting in
a proportion):
Example results: 10� 11¼ .9091

3. Multiply the proportion by 100 to obtain a
percentage:
Example results: .9091� 100¼ 90.91%

4. Scruggs and Mastropieri (1994) provided
general interpretational guidelines for PND
results:
� PND> 70 for effective treatments
� 70> PND> 50 for questionable
effectiveness

� PND<50 for no effective results in the
current example, PND> 70, resulting in
an interpretation of ‘‘effective.’’

The trade-off for this elegance and sim-
plicity is a somewhat limited utility. Shortcom-
ings of PND include its lack of a common effect
size statistic, which makes inclusion in
meta-analytic studies and direct comparisons
to other interventions difficult (Strain, Kohler,
& Gresham, 1998). It is also of limited utility
in more complicated designs other than a
simple AB design. For subsequent baseline or

intervention phases, the choices are to com-
pare later trials to the original baseline or calcu-
late multiple results for every baseline=
intervention pair, which may skew the results
(Jenson et al., 2007).

Last, and of particular concern to clinician-
researchers in psychophysiology, care must be
taken when choosing appropriate data sets.
PND is vulnerable to false negatives in data
with high degrees of variability. This may be
more acceptable when examining data that
do not ‘‘bounce’’ much between time frames,
such as extremity temperature, but may cause
significant problems when examining high vari-
ance data sets, such as nonsmoothed neuro-
feedback of EEG spectral frequencies.

However, minor calculation adjustments
can produce dramatic increases in the utility
of results. Given its simplicity, elegance, and
interpretability, PND’s advantages seem to out-
weigh its shortcomings, as evidenced by its use
in the published literature.

An alternative to PND that addresses many
of its limitations is PAND. PAND can be
applied to multiple baseline designs, is useful
for longer data sets, and allows for the calcu-
lation of Pearson’s phi, a useful effect size stat-
istic. The primary difference is that instead of
using one data point in the Baseline Phase,
all available data are utilized. A step-by-step
set of instructions for calculating PAND in a
spreadsheet format is listed in the appendix
of Parker, Vannest, and Brown (2009).

PEM

White and Haring’s (1980) Split-Middle
Method and Ma’s (2006) PEM approach data
slightly differently, using the median of Phase
A (Baseline) scores as the basis of comparison,
as opposed to the highest data point. This
simple adjustment allows for a number of
improvements, including using more of the
collected data (so that less information is sacri-
ficed), controlling the effects of outliers, and
allowing for the calculations of meaningful
standardized effect sizes.

The mechanisms by which this is
accomplished are relatively straightforward.

FIGURE 3. Percentage of Non-Overlapping Data Points (PND)
calculation method utilizing the model data set. Note. This
approach measures the number of observations in the treatment
phase that exceed the highest point in the baseline phase (gray
marker). Data points counted in the treatment condition are
noted by larger markers (n¼10).
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In the PND calculation, a proportion is gener-
ated from the percentage of data points
exceeding the criterion: the highest baseline
value. The PEM, using the median in the base-
line as the criteria, allows the calculation of four
proportions:

1. Calculate the proportion above and below
the median in the baseline phase (Figure 4)
Example results:
Above¼ 50%
Below¼ 50%

2. Calculate the proportion above and below
the baseline median in the intervention
phase:
Example results:
Above¼ 100%
Below¼ 0%

3. Use the resulting ratios as the four-square
elements in calculating a chi-square stat-
istic, as described next.

When comparing the two ratios, the base-
line ratio (at 50=50) is the expected value if the
data were randomly distributed. If the inter-
vention has no effect, the result would look
very much like the baseline data. Any differ-
ences between the two, then, are a goodness
of fit index, or how well the observed data
(Intervention Phase) matches the expected
data (Baseline Phase). This is the basis of a
chi-square test: one of the most common and
versatile nonparametric statistics. In fact, even

in small data sets, Fisher’s Exact Test can be
used (Hintze, 2004), or Barnard’s Test for the
empirically intrepid (Barnard, 1945). These
results can yield Z scores and significance
values, which is an advantage not held by PND.

The Split-Middle Method and PEM can
also produce effect size statistics from the two
(baseline phase proportions) by two (inter-
vention phase proportions) table calculated
from the data. For example, Table 1 shows
crosstabs for an experiment run where 80%
of the intervention phase data were above
the baseline median.

From these crosstabs, the calculation of a
chi-square is a standard process. The chi-
square, in turn, allows for the calculation of
phi, a standard effect size statistic (Cohen,
1988) that would allow the results of the study
to be included in meta-analyses, and a prob-
ability score based on Fisher’s Exact Probability
Test (Figure 5). There are a number of factors
that influence the interpretation of the phi coef-
ficient, including effect size, but a general inter-
pretive guideline is: small effect size¼ .10,
medium effect size ¼.30, and a large effect
size¼ .50. There are many resources for these
standard calculations, including a web-based
calculator from Vassar College: see http://faculty.
vassar.edu/lowry/tab2x2.html.

IRD

The IRD (Parker & Hagan-Burke, 2007) is a
metric that appears to be particularly germane
to psychophysiological research. It is closely
associated with the procedural approaches
used in PAND and PEM, is a widely accepted
effect size metric, and is sensitive to changes
in an individual’s skill in producing changes

FIGURE 4. Percentage Exceeding Median (PEM) calculation
method utilizing the model data set. Note. This approach mea-
sures the proportion of data points above and below the baseline
median (gray marker) in both the baseline and treatment phases.
Data points above the median are black; data points below the
medium are white.

TABLE 1. Percentage of Data Points Exceeding the Median
Crosstabs for Hypothetical Baseline Phase (A) and Intervention
Phase (B) Data

Phase A Phase B Totals

Proportion above median 50 80 130
Proportion below median 50 20 70
Totals 100 100
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in functional behavior. It has been used in
many medical research studies under the name
of Risk Reduction or Risk Difference.

The primary conceptual difference
between IRD and other methods described in
this review is that the IRD is calculated as the
improvement rate in the intervention phase
minus the improvement rate in the baseline
phase, as opposed to the difference between
phase averages. The primary distinction is that
IRD accounts not only for average differences
in treatment conditions but also trends within
those conditions. Note that in the discussion
of this calculation, the terminology ‘‘treatment
phase’’ is used in place of ‘‘intervention
phase’’ to remain consistent with the standard
nomenclature of the formulae.

In many cases, the results of IRD calcula-
tions are correlated with PND, PAND, and
PEM but have better discriminability than
PND and can show negative effects for treat-
ments that have iatrogenic outcomes (Parker
et al., 2009). Moreover, in a series of studies,
IRD was shown to be more strongly validated
than PEM or PND and to have greater resili-
ence with high variability data sets (Parker &
Hagan-Burke, 2007).

Simply put, IRD is the difference between
two improvement rates, which are expressed
as two proportions. The proportions are gener-
ated in a fashion similar to PEM and PAND.
The formula for calculating IRD is

IRD ¼ IRT � IRB

Where:

IRT ¼
N improved data treatment phase

Total data points treatment phase

IRB ¼ N improved data points baseline phase

Total data points points baseline phase

The number of improved data points is
defined as the points of data that either tie or
exceed all of the data points in a contrasting
phase (Figure 6 and Table 2). If you are
up-training a variable, the IRB would be all the
data points in the baseline that are the same as
or greater than any point in the treatment phase.
Conversely, improved data points in the treat-
ment phase are calculated as the number of data
points that are greater than all of the data points
in the baseline phase. The calculation method
using a model data set is as follows:

1. Identify the number of nonoverlapping and
total data points for each phase, as shown in
the formula just presented.

2. The criteria for Improved Data Points are dif-
ferent for Baseline and Treatment Phases:

a. Baseline¼ all data points at or above any
data points in the Treatment Phase.

FIGURE 6. Improvement Rate Difference (IRD) calculation
method utilizing the model data set. Note. IRD measures the
amount of improvement and changes in direction from baseline
in clinical trials. Improved Data Points in each condition are
noted by large markers.

FIGURE 5. Calculation of effect size statistics (e.g., chi-square, phi, Fisher’s Exact Probability Test) using Percentage Exceeding Median
(PEM) Crosstabs from Table 1. Note. The data analyzed are from the model data set.

STATISTICAL APPROACHES IN SINGLE-CASE RESEARCH 165



b. Treatment Phase¼ all data points above
all data points in the Baseline phase.

3. Calculate the Improvement Rate Ratio for
each phase. Note again the differences
between Baseline and Treatment Phases:

a. Baseline: Improved data points are the
overlapping data points:

Improved

total
¼ 2

5
¼ 0:4

b. Treatment: Improved data points are the
nonoverlapping data points:

Improved

total
¼ 9

11
¼ 0:82

4. Calculate

IRD ¼ IRT � IRB ¼ :82� :4 ¼ :42

5. Multiply the proportion by 100 to obtain a
percentage: .42�100¼ 42%

6. The interpretive statement for this result
reads as ‘‘The gain in improvement rate
from the Baseline Phase to the Treatment
Phase is a 42% gain, which is not a signifi-
cant level of change.’’

As with PEM and PAND, the interpreta-
tions of effect size are based on ratios obtained
by comparisons of Baseline and Intervention
Phase changes. An IRD of 50% (.50) indicates
a chance level of difference, resulting in no
improvement. The maximum value for
improvement is equal to 1.0, and for iatrogenic
effects the maximum decrease is �1.0 (Parker
et al., 2009). Visual inspection and other
empirical approaches interpret the model data
set as significantly improved, but the IRD clas-
sifies it as not significant. It can be seen that an

extension of the treatment phase would have
been necessary to generate sufficient data to
show clinically significant improvement. This
is an added level of stringency that can be use-
ful if the experimenter is interested in making
causative statements.

Further refinement of interpretation can be
generated with confidence intervals. Every
basic statistical software package will have a
function to generate confidence intervals. The
confidence interval brackets can provide an
index of how much faith, or confidence, to
put into a set of results. Wide brackets indicate
low precision and unreliable data, whereas
tight brackets indicate the opposite. The 95%
confidence interval is traditional for reporting
in both research and applied settings.

To aid in the calculations and inter-
pretations of IRD from study data, there are
several no-cost resources digitally available.
WinPEPI (Llorca, 2002) is available for down-
load from http://www.brixtonhealth.com/
pepi4windows.html, and Buchan (2006) pro-
vides a simple on-line program (http://www.
phsim.man.ac.uk/).

HLM

A separate and very useful analytical tool for
both analyzing data within a study and making
that study more readily available for subsequent
meta-analyses is the HLM (Raudenbush & Bryk,
2002). This analytical approach employs a mul-
tilevel approach to single-case designs, where
Level 1 measures the change from baseline to
intervention phase. Level 2 analyses accumu-
late data over multiple Level 1 studies and can
be used to examine causal elements behind
treatment effectiveness by isolating and
accounting for different factors (Jenson et al.,
2007). In other words, Level 1 analyses will typi-
cally be used with individual single-case design
studies, whereas Level 2 analyses are employed
in meta-analytic studies.

Although the calculation method is more
complex, there are a number of advantages
to this approach. The most apparent is that
with a nested, hierarchical approach to
analysis, it is a natural metric for inclusion in

TABLE 2. Total Improved and Nonimproved
Data Points in Baseline and Treatment Phases

Condition Baseline Treatment

Improved 2 9
Nonimproved 3 2
Total 5 11
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sophisticated meta-analyses that may assist in
isolating treatment component effectiveness
over time. This calculation also demonstrates
good control for Type I and Type II error rates
and can generate p values and effect sizes with
samples as small as 15 observations (Jenson
et al., 2007).

The calculation for HLM Level 1 is

cT ¼ b0 þ b1ðX1Þ þ eT

Where:

cT¼A participant’s score at time T. If T¼ 1, it is
the first observation in the first Baseline
Phase.

b0¼Mean of the first baseline phase
b1¼Difference between the baseline mean

and intervention mean
X1¼A marker for which phase an observation

is in. Traditionally, 0¼Baseline and 1¼
Intervention.

eT¼ error component

When this formula is examined, some fea-
tures emerge: all of the data for one subject are
summarized into two scores, which allow for
direct comparisons across studies of differing
observation lengths. In addition, because b1 is
a difference score, the summed scores allow
for effect size calculations, similar to the IRD.

The calculation for HLM Level 2 is

b0j ¼ c0o þ l0j

b1j ¼ c1o þ l1j

Where:

b0j¼ The calculated baseline mean for each
subject:

0¼Baseline
j¼ Participant number

c0o¼Grand mean across subjects
l0j¼Difference between the raw baseline

mean for one subject (j) and the grand
mean

And:

b1j¼ The calculated difference between base-
line and intervention phases, comprised of:

c1o¼A subject’s difference between Baseline
and Intervention phase means

l1j¼ The difference between individual differ-
ence scores and the grand mean inter-
vention difference score.

In both Level 1 and Level 2 analyses, calcu-
lation of effect sizes and significance levels are
performed by a simple chi-square analysis,
similar to other analyses covered in this article.
Unlike the other analyses presented in this arti-
cle, HLM is too complex to be efficiently calcu-
lated by hand, especially for larger or more
complex data sets. There are programs
designed specifically for this analysis that calcu-
late all the requisite components (Raudenbush,
Bryk, Cheong, & Congdon, 2004). This pro-
gram does entail some cost but may be
licensed for six months at a time for a reason-
able fee. In addition, more universal statistical
software packages are capable of doing HLM
analyses including Statistical Package for the
Social Sciences (SPSS: An IBM Company),
and Statistical Analysis Software (SAS Institute
Inc.), both of which are commercially available
at varying licensing levels.

CONCLUDING REMARKS

Part 1 of this two-part series on single-case study
design in psychophysiological research dis-
cussed the context, structure, and general
techniques available to practicing clinicians
and clinical scientists to generate evidence-
based psychophysiological data. Utilization of
these techniques makes it possible for the
practice-level clinician to make meaningful con-
tributions to the clinical literature, especially in
the formulation of validated, empirically sup-
ported treatments. The techniques and design
structures of single-case design are a substantive
alternative to large sample size, randomized
control trials, which are sometimes not the best
research paradigm for clinical psychophysiology.
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In this article, statistical techniques designed
specifically for nonnormally distributed data
were discussed within a context of single-case
study designs in order to decrease barriers to uti-
lizing these research methods. There is a range
of simple analytic techniques that address issues
of serial dependency that are not covered in this
article, but are readily available in the scientific
literature, that may be used with a broad array
of research questions.

There are no ‘‘hard and fast’’ rules regarding
which analyses to use for any given experimental
procedure because the modular nature of the
methodology. A general guideline, however, is
that the more complex the design, the more
sophisticated the analysis. For example, a simple
A=B design can be sufficiently addressed with a
PND analysis, whereas the inclusion of a with-
drawal phase (such as recording without feed-
back) would benefit by PAND, being slightly
more sophisticated. A multiple baseline with
reversal phase would fit best with IRD or HLM
analyses, and so on.Whenever possible, include
analyses that provide an effect sizemetric, which
will qualify the study for potential inclusion in
later meta-analytic studies.

Ultimately, utilization of single-case design
in psychophysiological research will maximize
the accessibility of clinical data in rigorously
designed empirical studies, which will allow
clinical researchers to identify the efficacy
and effectiveness of clinical interventions.
Moreover, the inclusion of individual studies
in larger meta-analytic reviews will help deter-
mine the most powerful elements of a clinical
intervention and to cumulatively extend the
depth and breadth of knowledge within the
clinical literature.
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