
  

 

Journal of Neurotherapy: Investigations in 

Neuromodulation, Neurofeedback and Applied 

Neuroscience 

 

Z-Score Training, Combinatorics, and Phase Transitions 
Lincoln Stoller 

a
 

a 
Tenger Research, LLC , Shokan, New York, USA 

Published online: 26 Feb 2011. 

 

 

PLEASE SCROLL DOWN FOR ARTICLE 

 

THIS OPEN-ACCESS CONTENT MADE POSSIBLE BY THESE GENEROUS SPONSORS 

 

To cite this article: Lincoln Stoller (2011) Z-Score Training, Combinatorics, and Phase Transitions, Journal of 

Neurotherapy: Investigations in Neuromodulation, Neurofeedback and Applied Neuroscience, 15:1, 35-53, DOI: 

10.1080/10874208.2010.545758 

To link to this article:  http://dx.doi.org/10.1080/10874208.2010.545758 

© International Society for Neurofeedback and Research (ISNR), all rights reserved. This article (the “Article”) may be 
accessed online from ISNR at no charge. The Article may be viewed online, stored in electronic or physical form, or 
archived for research, teaching, and private study purposes. The Article may be archived in public libraries or university 
libraries at the direction of said public library or university library. Any other reproduction of the Article for redistribution, 
sale, resale, loan, sublicensing, systematic supply, or other distribution, including both physical and electronic 

reproduction for such purposes, is expressly forbidden. Preparing or reproducing derivative works of this article is 
expressly forbidden. ISNR makes no representation or warranty as to the accuracy or completeness of any content in the 
Article.  From 1995 to 2013 the Journal of Neurotherapy was the official publication of ISNR (www. Isnr.org); on April 27, 
2016 ISNR acquired the journal from Taylor & Francis Group, LLC. In 2014, ISNR established its official open-access journal 
NeuroRegulation (ISSN: 2373-0587; www.neuroregulation.org). 

 

http://dx.doi.org/10.1080/10874208.2010.545758
http://www.neuroregulation.org/
http://www.swingleclinic.com/
http://www.appliedneuroscience.com/
http://www.neurocaregroup.com/
http://brainmaster.com/


Z-SCORE TRAINING, COMBINATORICS, AND PHASE TRANSITIONS

Lincoln Stoller

Tenger Research, LLC, Shokan, New York, USA

Live Z-score neurofeedback training introduces neural training based on simultaneously
meeting multiple quantitative EEG-based conditions related to power, dispersion (amplitude
asymmetry), coherence, and phase (Thatcher, 2008). The greater strength of the approach
lies in being able to train tens, hundreds, or even thousands of criteria simultaneously. In
taking multithreshold training to a quantitatively new level, Z-score training provides a hol-
istic picture of the brain enabling us to examine the space of the brain’s electrical activity
with new detail. This article develops a picture of the brain as an evolving dynamical system
focusing on the manners in which the brain changes, rather than the specific configurations
to which it changes. The object is to develop a better understanding of how we learn in order
to develop protocols that better help the brain adjust itself in any situation.

INTRODUCTION

Z-score training asks trainees to configure their
brain’s activity in a way that can be measured
with reference to a normalized database con-
taining averages of the quantitative EEGs of a
large population. This does not mean that
one is necessarily training ‘‘to the average,’’
although that is an option.

This article focuses on the 4-channel
‘‘Percent Z-Score OK’’ (PZOK) protocol,
developed by Tom Collura and associates
(Collura, 2008; Collura, Guan, Tarrant, Gailey,
& Starr, 2010), which compares a trainee’s EEG
real-time absolute power, relative power,
amplitude asymmetry, coherence, and phase
at four sites in each of eight frequency bands
(delta, theta, alpha, low beta, medium beta,
high beta, total beta, and gamma) to popu-
lation averages. These measurements generate
248 simultaneous criteria.

The clinician chooses the four sites at which
the EEG is measured, the degree to which
trainees are asked to conform their EEG signal
to a value stored in a database representing a

population norm—which is to say the clinician
prescribes the range about each population
value to which trainees are to configure their
EEG signal—and the number of requested con-
ditions (of the total 248) that need to be met for
the trainee to receive positive reinforcement.

Other Z-score training protocols can be
employed. Practitioners conducting neuro-
feedback training can ask trainees to place
themselves in any relation to any particular
values in the normed database. For example,
trainees can be asked to conform to the norms;
move away from the norms; exhibit more or
less variance; or exhibit more or less syn-
chrony, coherence, or comodulation between
sites. All of these conditions can be presented
simultaneously for different sites or different
site pairs. The PZOK protocol allows insight
into these and similar protocols.

ASSUMPTIONS

There are a number of assumptions inherent
in using population norms as benchmarks for

Received 13 August 2010; accepted 1 December 2010.
Address correspondence to Lincoln Stoller, PhD, Tenger Research, LLC, 148 Dubois Road, Shokan, NY 12481, USA. E-mail:

LS@tengerresearch.com

Journal of Neurotherapy, 15:35–53, 2011
Copyright # 2011 ISNR. All rights reserved. 
ISSN: 1087-4208 print=1530-017X online 
DOI: 10.1080/10874208.2010.545758

35



individual performance, and I do not review
them here (Thatcher, Biver, & North, 2002;
Thatcher, 2008). I introduce new assumptions
that support a simple analysis and provide
insights into the general nature of multivariable
conditioning.

It is crucially important that practitioners
understand the assumptions that underlie our
understanding. These assumptions are uncon-
trolled approximations made either by necess-
ity or because they substantiate what we
already do without understanding. The path
to greater understanding will follow their
refinement or replacement.

The first assumption regards the number of
independent Z-score parameters. Some of the
248 Z-score parameters are interdependent.
Some are manifestly dependent, such as the
Total Beta absolute and relative amplitudes that
include in their computation the Low, Medium,
and High Beta absolute and relative amplitudes.
Similarly the Relative Amplitude Ratios, formed
from the real-time Relative Amplitude and the
average population relative amplitudes, provide
another measure of the relative amplitudes
contained in other Z-score parameters.

The use of dependent values as separate
variables distorts the presumption of equal
reward weightings for the different parameters
of the PZOK protocol. This is because provid-
ing multiple rewards to separate criteria driven
by the same cause amplifies the reward to that
cause relative to other causes that are given less
representation.

I consider the fully independent variables
to be the power (relative or absolute, but not
both), in seven bands at each of four sites
(Delta, Theta, Alpha, Low Beta, Middle Beta,
High Beta, and Gamma, but not Total Beta),
and the asymmetry, coherence, and phase in
seven bands at each of six pairs of sites. This
results in 154 independent variables. We are
still considering the same Z-score training,
we’re just assuming it to be represented by
154 and not 248 independent variables.

The second assumption I make is that the
trainee is equally able to meet the reward cri-
teria of the various parameters. That is, trainees
can just as easily raise their alpha amplitude by

1 standard deviation as their theta amplitude
by 1 standard deviation, or their alpha ampli-
tude at one site by a certain percentage of a
standard deviation versus their alpha ampli-
tude at another site by the same percentage
of the standard deviation measured at the
other site. This is most likely a false assumption,
but it does not impact my general conclusions.

The third assumption I make is that Z-score
feedback training works purely through oper-
ant conditioning, an assumption common to
other forms of neurofeedback training. This
assumption has not been well tested and is
not true in cases that include the LENS
protocols—which employ exactly the same
hardware and software but different software
algorithms—or protocols that involve entrain-
ment, or protocols with efficacy that is related
to the success of adjunctive biofeedback (e.g.,
for relaxation of the sympathetic nervous sys-
tem), or protocols involving trance induction
(such as Alpha-Theta therapy) or other effects.

These assumptions enable us to discuss
important issues that would otherwise escape
generalization and go unexplored.

MULTIDIMENSIONAL TRAINING
SPACES

A one-dimensional training space employs a
single criterion. Trainees are asked to modify
a single variable, and feedback informs them
of their progress. There are three basic types of
feedback: positive reward, negative inhibit, and
no feedback. Feedback can also reflect related
conditions, such as rewarding rate of progress.

To succeed in a situation of this kind, the
trainees need to control the parameter in ques-
tion, correlate the feedback with their internal
changes, and remember the results of a series
of actions. Practitioners take these powers for
granted, but in the case of multi-dimensional
feedback these requirements become complex
and the trainees’ abilities should be measured
rather than assumed.

In multidimensional conditioning trainees
are asked to satisfy multiple criteria simul-
taneously or in sequence. With many dimen-
sions involved there are more directions in
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which trainees can configure their brain state.
This leads to new questions concerning how
trainees can distinguish in which direction they
are changing; how they identify those aspects
of change that are being rewarded; and how
they assemble, or move toward, a multipara-
meter goal.

The number of different ways that trainees
can configure their EEG grows geometrically
with the number of conditions they are asked
to meet. In a one-parameter space trainees
respond to the three conditions regarding their
proximity to the desired action or condition:
getting closer, getting farther away, or not
changing. For brevity I describe these relative
to the goal as positive, negative, and neutral.

Based on these three criteria (positive,
negative, and neutral) a two-parameter space
(a description in which there are two para-
meters that can each be positive, negative, or
neutral) supports to 32¼ 9 descriptions of the
trainees’ change of state. These nine descrip-
tions include all the combinations of positive,
negative, or neutral change in one parameter
combined with the three possible changes in
the second parameter. For example, one’s
change of state could be positive in the first
and second parameters, positive in the first and
neutral in the second, neutral in the first and
positive in the second, and so on.

A three-parameter space responds to
33¼ 27 conditions, and a space with 154
independent parameters responds to 3154 con-
ditions, which is a number on the order of
10 to the 73rd power. That is to say, there
are as many ways to mix and match three poss-
ible responses with 154 criteria as there are

particles in the known universe (estimated at
between 1072 and 1081). These counting
exercises are not very useful, and some
approximations are needed.

The PZOK protocol asks trainees to con-
figure their EEG so as to accomplish a certain
degree of simultaneous success in all of the
248 criteria, where each ‘‘success’’ entails put-
ting one of the measured parameters within a
certain number of standard deviations of the
mean population value.

Each successfully met condition in the
parameter space of 248 conditions adds 1
point, as it were, to the trainees’ instantaneous
score. Whenever that score exceeds a certain
limit, or a certain percentage of the possible
248, a feedback reward is given. Trainees are
allowed some time to interact with the feed-
back, something on the order of 20 to
40min, and during that time it is assumed that
their brain moves toward a general conformity
with all 248 criteria, in some as-yet unquanti-
fied way.

The maps in Figure 1 show a measure of
relative amplitudes in five frequency regions.
The maps color code the deviation of the
amplitude from the population norm in units
of standard deviations. This measure can be
different for each frequency region as it is
derived from the distribution of amplitudes of
individuals at this frequency in the sample
population.

In Z-score training the deviations from the
norm are recomputed several times each
second to give a series of ‘‘instantaneous devia-
tions from the norm.’’ It is not really instan-
taneous but is rather a value computed over

FIGURE 1. Relative power measured instantaneously.
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a relatively short time and based on an EEG
sample that, in the protocol considered here,
is taken over an ‘‘epoch,’’ or truncated time
series of 1 s or longer. The duration of the
epoch determines the slowest wavelength
component that can be extracted from the sig-
nal, as discussed by Stoller (2010).

If the maps in Figure 1 give the results over
this short period, at an instant as it were, and
the PZOK protocol is set to accept relative
amplitudes within þ1 or �1 standard devia-
tions of the norm, then each of the 36 sites
circled in the maps in Figure 2 are sites where
the amplitudes meet this condition. These are
the sites located within the green regions in
the maps in Figure 1.

If the PZOK protocol is run based only on
the 95 sites and relative amplitude scores
shown in these figures—which it is not done
in real training but which we might assume
for the sake of this example—then the 36 sites
with acceptable amplitudes would yield a
score of 36=95, or 37.9%. If the acceptance
threshold is set above 37%, then the instan-
taneous presentation in Figure 1 results in a
single reward feedback event.

In the PZOK protocol the clinician adjusts
the range and threshold parameters until the
reward is given at a rate that the clinician
judges to be sufficiently frequent. This usually
obtains from requiring compliance to within 1
to 2 standard deviations of the norm for any
50% to 70% of the 248 parameters. The proto-
col does not use inhibitory feedback.

A 1-s epoch is the shortest epoch that can
discriminate frequencies down to 1Hz. Feed-
back criteria can be generated more frequently
than this, up to the hardware’s sampling rate

normally around 256Hz, but EEG frequency
components computed more frequently than
the inverse of their frequency are interde-
pendent, which means that feedback based
on their measure is not immediately responsive
to changes in the trainee’s EEG.

Another constraint on the feedback per-
tains to the rapidity of feedback events. For
tone-reward based sound feedback to be
effective the trainee must be able to discrimi-
nate between sounds, so feedback events are
limited to something equal to or less than
4Hz, or 4 per second. Some people may be
able to discriminate the presence or absence
of a reward at twice this rate, and presumably
visual feedback could be delivered more fre-
quently, but for the purposes of this analysis I
assume a feedback rate of 4Hz. That means
the trainee is either getting and comprehend-
ing a reward or getting and comprehending
the absence of a reward, four times each
second.

I refer to the number of standard deviations
from the norm within which the trainee must
constrain each parameter as the range and
the percentage of all parameters that must
simultaneously fall within this range of the
norm to generate a reward as the threshold.
Feedback rewards can be made more frequent
by widening the range, lowering the threshold,
or doing both at the same time.

THE PROBABILITY OF SUCCESS AND
THE EXPLORATION OF STATES

Imagine that you are learning to dance ballet
by standing in front of 248 judges, each of
whom will rate your performance on separate

FIGURE 2. Rewarded sites within �1 standard deviations of the norm.
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criteria. You know nothing about ballet, have
no knowledge of the criteria, and have no idea
of how the criteria are assigned to the judges.
To make matters more confusing, all that each
judge can tell you is whether you’re performing
better, performing worse, or not exhibiting any
change in your performance. Moreover, you
don’t know which judge is evaluating what
criteria!

You make some movements and you’re
confronted with 248 evaluations. How could
you ever learn ballet in this manner? Yet this is
exactly what the brain confronts in PZOK train-
ing, and somehow the brain learns to ‘‘dance.’’

Learning in this context is not as hard
as it might seem. The game Mastermind is a
code-breaking game in which one player, the
defender, thinks of a key composed of four sep-
arate colored pegs, each peg being one of six
colors (see Figure 3). The challenger tries to fig-
ure out the key with as few guesses as possible.

On each turn the challenger proposes
some color combination and the defender
gives feedback telling the challenger whether
he or she has guessed any of the colors in the
key, and whether the challenger has guessed
the correct location of that color in the key
sequence. There are 64¼ 1,296 different key
sequences, yet it usually takes a challenger
fewer than 10 guesses to decrypt the key,
and the game can be solved in five guesses
or fewer (Knuth, 1977). It is helpful to consider
Z-score training as a variation of Mastermind.

Considered as a game of Mastermind, the
Z-Score database presents a ‘‘key’’ composed
of 248 ranges about the norm of the EEG that
the trainee is asked to meet. The trainee plays
as the challenger and makes a new ‘‘guess’’
every one fourth of a second. The feedback
sound tells the trainee if he or she has gotten
a sufficient number of parts of this key correct.

A 20-min training session admits 4,800
quarter-second feedback events, which means
that 40 sessions provides the trainee with
200,000 ‘‘tests’’ of their EEG configuration. In
this time many trainees manage to make sig-
nificant progress in moving their EEG to a small
range of ‘‘normal’’ configurations out of the
total 1,073 configurations that are possible.

PARAMETER SPACE AND THE FITNESS
LANDSCAPE

Much of physics is based on understanding how
systems configure themselves in the state space
of all possible configurations, and these con-
cepts will be applied here. The notions of learn-
ing discussed here are implicit in computer
simulations that have provided revelations into
the interaction of quarks, the evolution of eco-
systems, the mutation of viruses, and the per-
colation of oil through rock, to name just a few.

In dissipative systems, of which biological
systems are an example, the manner in which
systems change over time is determined by the
way in which they explore their environment.
This is true regardless of whether that environ-
ment is deterministic, chaotic, or sentient. All
such systems admit a notion of ‘‘reward,’’ be it
greater stability, greater reproductive success,
or positive subjective experience.

‘‘Fitness Landscape’’ is a term originating in
genetics (Wright, 1931) and used to describe
the full range of configurations available to a
system at any point in time, or over a period
of time. The landscape metaphor refers to the
effect of gravity to reward downhill movement,
inhibit uphill movement, and encourage move-
ment down and along valleys. This is a picture
of the landscape as a two-dimensional surface,
but in most systems the landscape is multidi-
mensional and the notion of ‘‘movement’’ is

FIGURE 3. Mastermind, a code-breaking game published in
1970.
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abstract. What actually takes place is that sys-
tems change their configuration to improve
their survival and reduce the energy they must
expend in order to persist.

The fitness landscape is easily understood in
terms of balls rolling on surfaces or species evolv-
ing over time, but it is just as effective in describ-
ing a subsystem whose behavior is modified
within the context of a circumscribed environ-
ment. In particular, the notion of a fitness land-
scape well describes the brain’s regulation of its
frequency components within its own sensory,
cognitive, and control environment.

TWO STRATEGIES

Two strategies for exploring parameter space
appear in one form or another in all systems.
The two strategies are stochastic and determi-
nistic (Rouzine, Rodrigo, & Coffin, 2001)
although they can be called mutative and
adaptive, or discontinuous and incremental.
Here the terms inductive and deductive are
used because they have direct meaning in
the context of learning. These two aspects of
change are distinct, universal, and usually dis-
tinguishable. ‘‘Evolutionary histories should
generally display two distinct regimes: Periods
of stabilizing selection, where the population
resides near a local fitness maximum, and peak
shifts in which the population moves quickly
from one fitness peak to another of greater
height’’ (Jain & Krug, 2007, p. 299).

Dissipative physical systems, systems with
components that interact with each other and
exchange energy, exhibit both stochastic and
deterministic properties. In species evolution
we observe both random mutation and
incremental change. In the game Mastermind
we experience these two approaches when
we begin the game by exploring sequence con-
figurations as dissimilar as possible until we find
one that we judge sufficiently promising. From
this point we proceed in incremental steps. I
believe the brain’s behavior during Z-score
training may embody these principles.

We do not know how the brain reconfi-
gures its EEG signature. We observe a limited
range of voltage fluctuations, and we infer that

due to mechanical origins, such as the slow
cortical potentials, certain frequencies are
coupled and their changes constrained. We also
operate under the assumption that over time
robust brains can reconfigure their EEG in a
manner that reflects healthy neuro-regulation.

I make no reference to underlying EEG
generators in this analysis. I rely instead on a
combinatorial understanding of the number
of states available to the brain, and a general
knowledge of how systems navigate environ-
ments of this kind. The scale of the fitness land-
scape, rather than its shape, or the mechanisms
of the brain’s passage across it, is presented for
review.

DISTINGUISHING RANDOM FROM
INCREMENTAL CHANGES

Inductive and deductive development strate-
gies differ in the kind of changes they utilize.
The utility of one strategy over the other
depends on the character of the fitness land-
scape that is being explored.

During the short 10-million-year period of
the Cambrian Explosion, 530 million years
ago, most of the basic marine animal body
forms developed as we observe them today.
How these divergences originated so quickly
remains in dispute, but there is little doubt that
they involved the alternative paths of stochastic
versus deterministic change, what here is refer-
red to as inductive versus deductive strategies.

EVOLUTION?

The reader may be wondering how an article
on clinical biofeedback has wandered into a
discussion of species evolution. You may be
satisfied with the following short answer, but
you should also appreciate its deep implica-
tions that we cannot fully explore here.

The short answer is that species evolve and
individuals learn in much the same manner
despite vast differences in the time spans and
mechanisms involved. This revelation has
resulted in breakthroughs in a variety of fields
where the systems being studied can be seen
as trying to optimize their interactions within
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complex environments (Beinhocker, 1999;
Holland, 1996; Mitchell, 2009). This approach
directs our focus away from the often insol-
vable problem of deterministic prediction and
toward an exploration of the adaptive process
itself.

At its deepest level this describes a feed-
back process that applies wherever the systems
being studied share the following properties:

1. They change within a well-behaved space
of constrained possibilities, which we call
the fitness landscape.

2. The changes that occur do not qualitatively
change the systems, the landscape, or the
systems’ ability to interact with their
environment.

3. The systems can discriminate the degree to
which their change of state changes their
fitness in the environment.

4. Changes in fitness constitute a reward that
impacts each system in a direct way.

5. The combination of past changes and
related rewards create a feedback loop that
impacts systems’ future changes.

Neurofeedback research meets these criteria
when the frequencies we train play a
consistent, constructive role in the brain’s lar-
ger regulatory systems. In addition, changes in
the EEG appear to correlate with changes in
the quality of the brain’s performance.

The drawback of this approach is that it
tends to obscure the key dynamics. The
inquisitive reader will be interested to learn
that the key to how systems evolve lies in the
topography of the fitness landscape, and
in what defines a configuration’s fitness
(Goldberg, 2002). In EEG neurofeedback,
these translate as the range of the brain’s elec-
trical patterns—that is, the plasticity of the
EEG—and an understanding of how the brain
is rewarded for changes in its EEG.1

INDUCTIVE STRATEGIES

Inductive strategies aim to widely explore the
fitness landscape in an effort to appreciate its
topography. Inductive strategies aim to develop
a complete picture of the landscape’s hills and
valleys in order to find optimal locations or
configurations. Such strategies assemble solu-
tions from an extended interaction with their
environment. In various systems this leads to
water collecting in puddles, species populating
niches, and the brain’s facility to move
between optimal regulating states that, in the
case of Z-score, might mean optimally
rewarded EEG signatures.

The rate at which a system accomplishes
inductive development depends on its speed
and the landscape’s topography. Here ‘‘speed’’
is not so much how quickly a system changes
but how rapidly it obtains the feedback that
determines the success of each new location.

A flat landscape would be one in which
each state, or location, was equally accessible.
The use of the word landscape is just a heuristic
device. In nearly all systems the landscape is
composed of various dimensions, some of
which are qualitatively different. In these cases
the notion of distance, although problematic, is
important because it allows us to compare dif-
ferent parts of the landscape.

A space’s topology refers to its most basic
features such as holes, islands, and bridges
between separated areas. If the space consists
of entirely disconnected regions, then the sys-
tem exploring it will be stuck on the ‘‘island’’
on which it first finds itself.

In the evolutionary example ocean and
land environments were sufficiently disparate
to inhibit marine species from exploring dry
land. In the realm of brain dynamics we might
conjecture that a trainee suffering traumatic
brain injury will have difficulty in reaching
functional states when starting from dysfunc-
tional ones no matter what form of feedback
or entrainment we provide.

Consider the inductive strategy in playing a
variation of the Mastermind game. Imagine a
Mastermind game in which you need to guess
a series of 10 separate and unrelated four-color

1An important phenomena widely noted in the study of sys-
tems of this kind is that the mechanisms of change, although
important for setting the time and length scales over which
change occur, generally do not determine the way a system
changes. For example, the patterns of social change are similar
regardless of whether wars are between tribes battering each
other with clubs or nations annihilating each other with bombs.
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sequences. Because the sequences are
unrelated, determining any one four-color
sequence will not help in finding others. An
inductive approach would be to test a selection
of demonstrably different sequences to find the
best initial configuration. This configuration
would then provide the starting point of a path
to the correct solution.

REWARD IS CRUCIAL

The hallmark of inductive change is the cover-
age of large areas of the fitness landscape, the
exploration of divergent configurations, and
the development of a map of successful config-
urations. Here ‘‘success’’ is entirely defined in
terms of reward although, truth be told, we
really don’t understand the brain’s reward
mechanism.

This notion of reward is an essential
ingredient in how the brain changes. We
would like to know what rewards really are,
including what’s being rewarded, and how
rewards correlate with changes. We say that
we reward the brain for conforming to the
Z-score norms using computer-generated feed-
back. This greatly simplifies the description of
the brain’s process of self-organization, and this
reward–response model is most likely false.

When, on occasion, our feedback
encourages a dysfunctional state, the tones and
colors that the feedback system presents are
not a full description of the incentive, or disin-
centive, experienced by the trainee. The true
reward, if it even exists as an independent and
quantifiable entity, is something experienced
internally. Our computer-generated feedback
is just our approximation or reflection of it.
Our computer-generated ‘‘rewards’’ are more
a means for communication than for incentive.

The field of Neurofeedback has been slow
to consider the issue of how new brain states
are ‘‘taught.’’ Basic questions about the role
of classical conditioning, operant conditioning,
cognitivism, and constructivism (Iyengar &
Lepper, 2000; Robbins, Schwartz, &
Wasserman, 2001) are pertinent to the ques-
tion of how people learn through neurofeed-
back. Incentives are crucial to computer

gaming (Alexander, 2010; Hopson, 2010). Like
neurofeedback, the game seeks to create a
state of mind, but unlike neurofeedback, the
game is its own end. We know little about
how neurofeedback trains the brain.

A benefit of multichannel Z-score protocols
is that they allow the brain to decide for itself
those aspects of the normalized state to which
it will conform. Presumably this means that the
brain will use its discretion in conforming to
the suggested norm. This is discussed in the
context of individual phenotypes by Kerson,
Gunkelman, and Collura (2008). In making its
own decisions regarding how to configure
itself, the brain is using the computer’s feed-
back more as a landmark rather than a goal.
And in this case what is the reward, what is
being rewarded, and who is generating the
reward, the brain or the computer?

This question is important because an
understanding of the reward is central to an
understanding of how a system navigates its fit-
ness landscape. In the case of inductive learn-
ing we assume that the system’s large changes
in state result in a reward that can be com-
pared to the reward it has received from its
previous state. Without this feedback the sys-
tem cannot understand the fitness landscape,
and if it cannot understand the landscape it will
wander aimlessly.

Regardless of the true nature of the feed-
back it is necessary that the brain be able to
discern the reward. This is the central assump-
tion that enables us to claim that the brain
learns. Without this assumption the graphs in
Figures 4, 5, and 6 would display no improve-
ment over time.

DEDUCTIVE STRATEGIES

A deductive strategy makes incremental
changes to a known configuration in search
of measurable improvement. A deductive strat-
egy works only when small changes result in
small improvements; it requires continuity.
Lacking continuity, there is no way to general-
ize the nature of the changes that result in
more reward from those that result in less.
Without this information the brain would not
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be able to ‘‘deduce’’ how to make improve-
ments and the deductive strategy would fail.

In an evolutionary example the develop-
ment of a webbed foot provides an aquatic
animal with better propulsion, and this web-
bing can develop incrementally as connective
tissue between the toes. In the Mastermind
game, changing one color will get a higher,
lower, or unchanged score. In a brain-training
example, changing the amplitude of oscilla-
tions in a particular band, while keeping others
relatively constant, will either result in a feed-
back reward or not.

Taking a purely deductive approach, the
brain would consider an EEG pattern for which
it received a reward and it would proceed to
independently modify each of the 248 para-
meters of the PZOK protocol and move to
configurations that receive a greater reward.

One might object that this anthropomor-
phizes the brain by treating the unconscious
as something with rational intent, but I know
of no neuro-anatomical theory or observation
to suggest that this could not be the case.

MEASURABLE DIFFERENCES

The difference between the inductive and
deductive approaches lies in the speed at
which they explore the fitness landscape.
Inductively made changes affect all aspects of
the state—the changes are global—and the
sequence of states tested are disparate and
weakly correlated.

To determine a state’s fitness, its full
Z-score measure must be recorded. This means
that a sufficient amount of time must elapse to
allow feedback at all frequencies. This assumes
the brain is trying to explore both high and low
frequencies, or the fast and the slow parts of
the EEG spectrum. It could be that some brains
ignore some portions of the fitness space. If
this is the case, then as therapists we would like
to know it.

When exploring its configuration land-
scape the rate of feedback can be no faster
than what is required for the slowest frequen-
cies in that part of the landscape. In the case
of the PZOK protocol the slowest part of the

landscape is the Delta band that includes fre-
quencies of 1 to 4Hz. This means that
feedback pertaining to changes in the Delta
states is provided only once per second, or
thereabouts. And this means that although
the inductive approach explores all EEG config-
urations, the rate at which it receives the feed-
back needed to compare one full-spectrum
state to another is constrained by the slowest
components of the landscape.

To the extent that the brain takes an induc-
tive approach and the fitness landscape is
uniform across frequencies, we expect to see
widely dispersed EEG configurations converging
to all frequency norms at the same average rate.
Both this wide dispersion across the fitness land-
scape and the rate of convergence should be
measurable using the metric described next.

In contrast, a deductive approach is mani-
festly local in the changes it makes to an EEG
state. Deviations are made about a configur-
ation of ‘‘known’’ fitness, and these deviations
are made sequentially in the different vari-
ables. In the Delta portion of the spectrum
rewards obtain roughly once per second, but
in the 25–30Hz Gamma region feedback is
provided more than 25 times per second.

To the extent that the brain takes a
deductive approach we expect to see narrowly
dispersed EEG configurations gradually converg-
ing to their norms. We expect to see Gamma
frequency bands converge 20 times faster than
Delta bands. This localization in the fitness land-
scape and the relative rates of convergence
should be measurable with the EEG hardware
and software that we currently employ.

PICTURING THE INDUCTIVE
LEARNING PROCESS

It has become apparent that most ampli-
tude and standard deviation increases
occur in the context of increasingly com-
petent functioning . . . [and] they are now
seen as transition states during which
short-term compensations and inhibitions
have been released. (Ochs, 2005)

These learning processes can be graphically
represented using easily measured parameters.
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The three axes in these graphs are Training
Time, Frequency Band, and Distance from
the Norm.

Clinical experience has shown us that
deviations from the norm (i.e., success in meet-
ing Z-score criteria) are reduced by half or
more over a period of 20 to 40 training ses-
sions. We can use these scales even though
we don’t know what mode of learning lies
behind the process. This gives us the graph in
Figure 4 where deviations from the norm lie
within a couple of standard deviations and
show substantial reversion to the norm over
the course of 40 training sessions.

Figure 4 shows what we expect from an
inductive learning strategy. It pictures what
might be obtained if only inductive learning
took place, which we expect to be true
occasionally if at all. This graph is only a heuris-
tic, and its details should be understood.

Convergence to the norm occurs stochasti-
cally. Large deviations in the brain’s state are
made in an erratic attempt to find a more par-
simonious state. The changes occur indepen-
dently across the frequencies. When the
brain finds an improved state it explores this
neighborhood of the fitness landscape. It does
this because it’s receiving a reward that makes
this state more ‘‘comfortable.’’

The lines connecting the tops of each col-
umn help the reader follow the progression in
each frequency band. The columns are colored
red to indicate that this type of learning
involves the system traversing relatively large

distances of its fitness landscape. Two shades
of red are employed to better distinguish col-
umns of the different frequency bands.

The column heights all start at 2 standard
deviations from the norm, and this is arbitrary.
One or 2 standard deviations from the norm are
normal, but each traineewill be different. Equally
arbitrary is the rate and extent of convergence to
the norm over the course of many trainings. The
progression of column heights, their rates of
changes, and the relative changes across
frequency bands is hypothetical.

Column heights grow and shrink because
some new configurations are better and
others worse. When new configurations are
rewarded, the brain remains in that neighbor-
hood; when they fail to be rewarded, or are
otherwise inhibited, the brain moves to a dif-
ferent location.

The brain wanders around like a drunk on
a pogo stick bouncing over a rough and hilly
landscape, falling down steps and slopes, and
bumping into or jumping over banks and walls.

This discontinuous improvement over time
and across frequencies embodies two assump-
tions. First, it assumes that the brain is
efficiently exploring all accessible states. This
is known as ergodic hypothesis, believed to
be true for most physical systems that are not
otherwise constrained.

Second, it assumes that as the brain
explores this space it remembers where it was
rewarded and retains these configurations
while it continues to search for additional
rewards. Unlike the drunk on the hillside the
adaptive brain can remember where the val-
leys are located, and return to them.

One’s ability to locate more optimal posi-
tions in the fitness landscape decreases with
time in accordance with a power law: The
probability of discovering an improved state
decreases as some inverse power of the time.
This reflects the topology of the fitness land-
scape and the fact that as time goes on there
is increasingly less unexplored space. This
power law form is a general property of induc-
tive learning and does not depend on the
reward criteria or the mechanism by which
the system traverses the landscape.FIGURE 4. Progress of inductive learning strategy.
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PICTURING THE DEDUCTIVE
LEARNING PROCESS

The graph in Figure 5 reflects our expectations
of a purely deductive strategy, which is also
something we do not expect to prevail at all
times. As in Figure 4 we’ve chosen to start our
hypothetical trainee from a state that departs
from the norm by 2 standard deviations in each
frequency band. The columns are yellow to
indicate that the paths of deductive learning
states traverse small neighborhoods of the fit-
ness landscape. Two shades of yellow are
employed to better distinguish the columns in
different frequency bands.

Learning occurs more rapidly in the
Gamma frequency bands because feedback
in these bands is delivered 25 times more
rapidly than in the Delta band. This allows
for faster movement through the higher fre-
quency bands of the fitness landscape, result-
ing is faster high-frequency convergence to
the norm.

The most unrealistic aspect of the learning
curves in Figure 5 is that they all progress
monotonically toward zero. In any system that
is described by a complex fitness landscape this
progression, although monotonic, can get stuck
and cease to show further improvement.

This stasis happens when the deductive
strategy finds itself in a kind of sinkhole. When
this occurs all the incremental changes are for
the worse. The system remains in this state,
which is the best it can find in its neighbor-
hood. In light of this property Figure 5, which

shows nothing getting stuck, applies only to a
system with a smoothly curved fitness land-
scape, one that doesn’t have any pockets (local
minima) away from the target state. We would
not expect Figure 5 to depict the fitness land-
scape of a real brain, and certainly not a
dysfunctional one.

THE MEASURE OF LEARNING

When engaging in inductive learning the brain
attempts to explore the fitness landscape
widely, and it generates states that cover the
landscape to a maximal degree. When engag-
ing in deductive learning the brain makes
small, incremental changes to its state in order
to optimize the state and maximize the reward.

An essential property distinguishing these
two strategies is the distance between EEG
configurations that the brain generates as it
explores the fitness landscape. This property
requires a new kind of measurement.

Measuring the ‘‘length’’ of the path that the
brain takes through the fitness landscape is
problematic because the fitness landscape is
parametrized by qualitatively different vari-
ables. Defining the ‘‘distance’’ that the brain
‘‘travels,’’ as it changes amplitude, coherence,
and phase presents ambiguities. It is similar to
defining the distance that an object travels
through space-time: How does one combine
extension and duration? In this case the ques-
tion is, How does one create a single para-
meter that measures a change in relative
amplitude at one frequency in combination
with a change in coherence between two sites
measured at another frequency?

The standard deviation of each parameter
provides a natural measurement scale. This is
a dimensionless scale that allows us to combine
different measurements.

Using this measure we can compute the
distance between two EEG states that differ
from one another by some number of standard
deviations in amplitude at one site and fre-
quency, call this value x1, some other number
of standard deviations in phase at a pair of
sites at another frequency, call this x2, and
some third number of standard deviations inFIGURE 5. Progress of deductive learning strategy.
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coherence at a pair of sites a some frequency,
call this x3.

Using the simple analogue of the length of
a line in three dimensions, the distance D
between these three states would be
(x21 þ x22 þ x23)

1=2. This generalizes to a distance
D in any number of dimensions, 248 in the
case of four-site Z-score training, as

Dð248Þ ¼ ðx21 þ x22 þ � � � þ x2248Þ
1=2

We don’t have experimental record of these
distances, but we already know all the x1,
x2, . . . , x248 component values that are
involved. These are the same values that are
color coded in Figure 1 and whose measure-
ments are instantaneously taken in the course
of Z-score training. As a result, adding this
measurement to Z-score training requires a
trivial additional computation after each
epoch.

We can now define D(j, k) as the distance
in standard deviations of the EEG state at time j
from the EEG state at time k. If we take k to be
one epoch after j and add up all of these dis-
tances over a sequence of epochs, then we
obtain Dpath, which is the length of the path
over which the EEG state has traveled over that
period.

Dpathðj; kÞ ¼ Dðj; jþ 1Þ þDðjþ 1; jþ 2Þ
þ � � � þDðk� 1; kÞ

Inductive learning presupposes that the learner
widely explores the space of possibilities. In the
EEG model this translates to changes in the EEG
signature that traverse a long path. Conversely,
deductive learning involves exploring closely
spaced states, so the EEG signature will traverse
a short path. We have used a color code of
yellow in Figure 4 to indicate short paths and
a color code of red in Figure 5 to indicate long
paths.

COMBINED LEARNING STRATEGIES

Experience with computer simulations and the
evolutionary record suggests that either one

strategy or the other is pursued depending on
the environment. Figure 6 shows rates of
extinctions taken from the fossil record. Recog-
nition of these periods of mass extinctions
contributed to the evolutionary theory of punc-
tuated equilibrium. We might suspect a similar
alteration between stability and instability to
occur in the realm of neuro-regulation.

Figure 7 superimposes learning rates in five
frequency bands over a full course of training.
The relative length of the paths through the fit-
ness landscape, what we’ve defined as Dpath, is
shown by the color of the lines. The lines are
predominately yellow as is characteristic of
deductive learning. The short, red line seg-
ments correspond to episodes where the brain
is frustrated, induced, bored, or otherwise
directed to engage in inductive learning. These
vertical line segments portray the brain making
discontinuous jumps in state.

We expect the brain employs a combined
learning strategy because a combination of
strategies is employed by many systems.
Deductive strategies are best when the fitness
landscape is smooth. An inductive strategy
always obtains when relatively large amounts
of noise push a system up the hillsides that
surround the landscape’s stable locations.
Whether this impetus is sufficient to reveal
new valleys depends on how deeply stuck
the system is (how high the hills are that sur-
round the local minima), how powerful the
random forces are that tend to kick it out of

FIGURE 6. Rates of mass species extinctions taken from the fossil
record (University of California Museum of Paleontology, n.d.).
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local equilibrium, and on what other valley
exist in the landscape.

Figure 7 portrays the behavior of any dissi-
pative system. The only thing about this picture
specific to EEG training is that the frequency
bands are separated, and the higher frequen-
cies learn faster.

In Figure 7 lines have replaced the columns
in the previous figures, and the column colors
by line colors. The colors remind us that induc-
tive learning explores the fitness landscape
widely with resultant rapid improvements,
whereas deductive learning tends to stay in a
small neighborhood and slowly seek improve-
ments. Charles Stark (2008) reported that pat-
terns of this sort are observed in Z-score
training, namely, gradual and abrupt changes
in deviations from the norms desynchronized
across the frequency bands.

Figure 7 is idealistic in its portrayal of
monotonic improvement at all frequencies
because, although we expect learning to
alternate between sudden and incremental
improvement, we expect trainees to hit thresh-
olds that stall their progress. We are describing
a process, not an outcome.

PHASE TRANSITIONS

The length scale Dpath plays the role of an
‘‘order parameter,’’ and the red line-segments

in Figure 7, showing the sudden drops in the
standard deviation from the norm, can be
thought of as phase transitions in the neural
state.

Phase transitions provide a powerful para-
digm for understanding complex systems. They
play a central role in the Haken-Kelso-Bunz
neurological model formulated in 1985 to
account for experimental observations on
human bimanual coordination (Kelso, 2008).
Phase transitions and related concepts,
including inaccessible regions, divergences,
and hysteresis, are explored in developmental
psychology in a 2001 article by Jansen and
Van der Maas (2001).

Phase transitions are defined with
respect to the fitness landscape. The term
refers to a change between two distinct
states that are separated by an inhibitory
barrier. In our context this means that there
exist at least two stable, different, and func-
tionally distinct EEG patterns that do not
gradually ‘‘morph’’ from one into the other
through a continuous series of incrementally
small changes. In other words, going from
one phase to the other necessarily passes
through inferior or ‘‘less fit’’ regions of the
fitness landscape.

This is logically the case because if one
could move from one phase to the other along
a path of constant rewards, then everyone
would eventually pass to the preferred phase.
The inferior phase would be unstable and,
although potentially long-lasting, it would not
persist as a separate phase.

It is worth exploring the meaning of a
phase transition at greater depth because there
are ambiguities in the phase transitions of finite
systems that we will encounter when applying
these notions to brain states. Some of these
ambiguities arise due to the brain’s finite size
and not because of properties specific to the
brain.

There are no infinite systems in nature,
but in physics and chemistry the mechanisms
that govern a system’s state operate on a
microscopic scale, whereas the phase changes
are measured on a macroscopic scale. For this
reason observed phase changes for systems

FIGURE 7. Progress of learning using combination of inductive
and deductive strategies.
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with astronomically many atoms are well
described by the equations for infinite systems.

The following three properties describe
phases in infinite systems. These properties
do not hold in finite systems.

Absolute Stability

Phases in noise-free systems are stable when
external conditions are held constant. Flawless
finite systems obey the condition of absolute
stability, but the existence of a flaw that allows
‘‘leakage’’ from one state to another under-
mines stability. Such a leak provides a way
around the barrier that separates one state
from another.

You can think of this metaphorically as
either a crack in the dike that holds the reser-
voir from flooding the valley or a stream that
exits at the back of the reservoir and meanders
its way around the mountain to irrigate the val-
ley. When this passage between the states is
large enough, we need to think of the less
advantageous state as meta-stable, and not
absolutely stable. In this case we apply the
term ‘‘neural phase transition’’ with some
latitude.

Kelso (1995) suggested that certain
meta-stable states of neuro-motor coordination
(referring to his studies of human hand move-
ments) persist through a form of mode locking
rooted somewhere in the neuro-mechanical
complex. This system’s exploration of its neuro-
muscular fitness landscape is described by a
process of phase slippage, which, when it
reaches a critical point, loses resonance. At this
point the system behaves chaotically and
widely explores its fitness landscape before
locking in to another meta-stable mode (Kelso,
1995).

Relative Stability

Phases in systems subject to fluctuations are
stable to the extent that fluctuations are small
relative to the thresholds that separate different
phases. The brain is certainly a fluctuating sys-
tem, and we know little about the extent,
duration, or specificity of its fluctuations. That
being the case, states that may be relatively

stable in one person, at one time or under
certain conditions, may be unstable in others.
When the conditions that maintain phase
separation are lost, the brain will change state.
The point is that phases may or may not obtain
depending upon conditions, and the nature of
the phase transition may depend on the man-
ner in which conditions change.

Some conditions will support a barrier
between the states and allow us to view
these states as phases. Consequently we will
be able to speak of protocols that enhance
phase transitions. Other conditions may allow
the emergence of a gradual transition that
leads from one neural state to the other such
that the notion of the two states as being
separate phases has no support. In this case
designers of neurofeedback protocols would
be better off thinking of protocols that facili-
tate stalled change rather than protocols that
breakdown barriers between distinct patterns.

Recall in our previous description of evolv-
ing systems we stated that the changes that
occur should not qualitatively change the sys-
tem, or the landscape. In applying this descrip-
tion to the brain it should be recognized that
the brain might do either or both of these
things. That does not vitiate our attempt to
apply this model, but it does imply that the
model might be limited.

Comprehensive

A pure system undergoes a complete and per-
vasive change when a new phase becomes
advantageous. The flakes in any given snow-
storm are all about the same size, yet the tran-
sition to ice crystals admits an infinity of
structures. Phase changes in finite systems are
limited in extent but, as the snowflake example
illustrates, the resulting structure need not be
unique. The phase transition describes a
process, not an outcome.

Most physical systems undergoing change
manifest the phenomenon of ‘‘pinning,’’
which is the hindering of motion due to
impurities and something similar occurs when
real, finite systems undergo phase changes.
These impurities, exceptions, or injuries
impose something like friction, and this leads
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to the cessation of change when the impetus
becomes weak. Impurities limit the size of
the region over which the phase change
occurs.

Looking at a sheet of galvanized metal, for
example, you see a hodgepodge of thumb-
sized regions—whose appearance is known
as ‘‘the spangle’’—within which the metallic
crystallites have lined up. In the case of a
two-dimensional surface the size of these
regions is the order parameter that describes
the crystallization transition. When undergoing
its transition from disordered to ordered crys-
tals, this parameter grows by a factor of
100,000,000, starting on the atomic scale of
a few angstroms (10�8 cm) and growing to a
macroscopic scale on the order of 1 cm.

Order parameters diverge in the phase
transitions of certain infinite systems, such sys-
tems are said to undergo ‘‘second order’’
phase transitions. In a crystallization transition
the size of a crystal would become infinite.
The path length we’re using as an order para-
meter would also diverge if a finite change
had to be made everywhere in a code consist-
ing of an infinity of parameters. But the brain
we’re describing is finite, and in a finite-sized
system the order parameter gets large without
diverging.

The term phase transition should be taken
generally. There are nuanced distinctions
between the phenomena of phase transitions,
bifurcations, and meta-stable states that
depend on a better knowledge of the fitness
landscape than that given by the Z-score
norms, which is all that we currently have.
Without better knowledge of this landscape
we don’t know exactly which description might
underlie the behavior shown in Figure 7.

The positions of the red line segments in
Figure 7 are only suggestive. We suspect the
inductive approach is more suitable at early
stages when the least is known about the fit-
ness landscape, and we only guess that
additional excursions away from equilibrium
may occur, or may need to occur, in order to
reach new plateaus in regulation. What might
actually be observed remains an open
question.

THE PROCESS OF NEURONAL
ADAPTATION

‘‘ . . . between the hard and the easy, the
regular and the irregular where the creative
pulse beats. (Kelso, 1995, p. 135)

I propose that inductive and deductive strate-
gies are employed to explore the fitness land-
scape. These strategies may operate in a
person at different times, or in different people
to differing degrees.

Some neuronal problems may stem from
an inability to execute one or the other of these
strategies. This suggests new feedback methods
targeted at strengthening the way in which the
brain learns, rather than the EEG signature that
it manifests.

Viewing brain states as paths through a fit-
ness landscape naturally leads us to wonder if
there are healthy and appropriate path-finding
skills, which is an extension of the EEG neuro-
feedback’s traditional goal of healthy and
appropriate states. This suggests that goal-
oriented training may be failing to develop
the equally or more important skills of neural
variability and judgment in modes of neural
processing. Toward this end we might intro-
duce more variety in the training regimen to
encourage flexibility and discourage the rou-
tine. This can be done in addition to protocols
that specifically training large or small excur-
sions in the EEG, or changes in the EEG that
occur over broad or selected ranges of the
spectrum.

Some Neurofeedback protocols may
already be enhancing a trainee’s facility to
move between states. In the case of Alpha-
Theta training a trainee learns a certain manner
of entering a Theta-dominated state over the
course of 10 to 20 sessions. Is it the Alpha-
Theta state that’s being trained, or the neural
skills to find it? And does the benefit that
accrues arise from manifesting the Alpha-Theta
state itself, or from the facility in navigating that
area of the fitness landscape? This may seem to
be a fine distinction, but the two views have
quite different implications: the first is goal
oriented, the second process oriented.
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A path description may also provide a
framework in which to better understand the
LENS protocol named ‘‘Rocking the Spec-
trum,’’ developed by Nick Dogris. In this proto-
col a series of short bursts of low amplitude
stimulation are delivered at 5 to 15Hz offsets
from that frequency at which the maximum
power is recorded over a specific site on the
cranium. This protocol is known to facilitate
new progress in trainees who have reached
an achievement plateau (St. Clair, 2008).

ENHANCING THE LEARNING PROCESS

Given that these strategies are fundamental,
how might we facilitate the training process
so that the brain can fully and quickly explore
its fitness landscape?

Consider the inductive approach first. From
playing the Mastermind game we know that
more specific feedback allows for a faster deter-
mination of the quality of the guess. In the neu-
rofeedback context this translates as providing
feedback that differentiates both the aspects of
the EEG’s success in meeting the norm and
the degree to which it meets the norm.

For example, different feedback elements
could simultaneously provide indications of
success in different areas of the EEG configur-
ation. The sound of a piccolo could indicate
achieving Gamma normalcy, an oboe for Beta
normalcy, all the way down the scale to a tuba
or timpani for Delta normalcy. These instru-
ments could be voiced together as the instru-
mental parts, fading in and out, of a familiar
symphony.

Visuals could simultaneously decompose a
picture into its different color components,
where each color component corresponds to
achieving normalcy in parameters such as
amplitude asymmetry, coherence, and phase.
It would be difficult to present 248 separate
feedback components in such a way that they
remained consonant and distinct, but it is not
impossible. We do not know the limits of the
brain’s discrimination, but it appears to be
more discriminating than we had suspected.

Next consider the needs of the deductive
approach to locating the EEG reward state.

According to this strategy we begin with a state
of known fitness and attempt incremental
improvements.

In the inductive case, where changes are
made globally, it is important to differentiate
the reward according to the variable that was
changed, but that is not needed for the deduct-
ive strategy. The reason it is not needed is that
changes are made one at a time in an incre-
mental strategy. The system already knows
which parameter it is varying. It only needs to
know if whether it’s varying this parameter in
the right direction.

A proportional reward is optimal for the
deductive approach. A proportional reward
provides one kind of feedback to a degree that
varies in accordance with the improvement in
the state and another kind of feedback to indi-
cate greater degrees of discouragement.

A simple rising or falling tone might be suf-
ficient, but people usually have imperfect
pitch, so a better approach might be to offer
tones of distinct character. For example one
might offer consonant tones of rising pitch, or
a sequence of consonant tones in a rising scale,
to indicate greater improvements, and a dis-
sonant tone of falling pitch, or a sequence of
dissonant tones in a falling scale, to indicate a
growing deviation from the norm.

Penijean Rutter (personal communication,
July 11, 2001) reported the use of proportional
complex feedback in the PZOK protocol as
more efficacious than a simple reward tone.
In proportional complex feedback tones of
varying pitch are delivered in proportion to
the client EEG’s movement further into the tar-
get range. For example, once the baseline stan-
dard deviation criteria are set for the variables
being monitored, the more variables that sim-
ultaneously meet this condition, the higher
the pitch of the reward tone. This continuous
tone reflects the average number of variables
meeting the baseline condition within, for
example, the previous 10-s period. This rising
and falling pitch indicates the client is meeting
the threshold and it tells how ‘‘well’’ the con-
dition is being met. In this way, clients’ get
instantaneous feedback on their exploration
of a large space of neural states.
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Based on subjective reports and on
QEEG maps of reduced deviation from the
norm Rutter reported that clients’ progress
varies by population, with the cognitively
impaired, nonmedicated population improv-
ing most quickly; the nonimpared, medicated
population more slowly; and a spectrum
of other responses typical of various
populations.

This begs the question of whether some
feedback could support both inductive and
deductive learning strategies. I suspect not,
because the strategies are so different. But
that does not mean they shouldn’t be offered
consecutively, or that the trainee couldn’t
switch from one to the other during a single
session.

The existence of these learning modalities
is conjecture, and although they are universally
relevant in theory, they may not be observable.
Abrupt transitions as shown in Figure 4 are
apparent, but we know little about them and
they may not manifest in a regular or uniform
way. In some people, or after certain training,
the gradual transition processes of deductive
learning might prevail, as shown in the sche-
matic of Figure 5.

Z-score maps provide a picture of recurring
patterns (Stark, 2008) that are different from
what we identify in EEG traces. Z-score’s Dpath

measure and fitness landscape enables us to
speak of phase transitions in neural states
and other chaotic phenomena. Similarities
between cortical and critical phenomena are
considered by György Buzsáki (2006).

CONCLUSIONS

The goal of this article is to understand what is
happening in the brain in order to create a
broader base of understanding for all work in
the field. This may result in better prescriptions
for treatment, but of greater interest are the
many unanswered questions of brain function
and physiology.

This analysis has focused on the process of
neural state changes, focusing on the general
question of how the brain explores its own
structures. We have gone beyond the notion

of structural plasticity to explore different pro-
cesses that may underlie plasticity.

We have applied the notion of a ‘‘fitness
landscape,’’ a term common to chaos theory,
and argued that the notion of phase transitions
well describes the learning process. I have
argued that as EEG biofeedback provides a
window onto the learning process, the EEG
should itself exhibit phase transitions.

This approach introduces new concepts,
such as the fitness landscape, and asks us to
reconsider existing concepts. The most impor-
tant concept to reconsider is the notion of
‘‘reward.’’ In clinical neurofeedback we are
so lax as to label as ‘‘the reward’’ any feedback
that we generate in conjunction with brain
state we seek to enhance.

The reward is a crucial element in the con-
text of evolving systems. Identifying the reward
and understanding its effects are fundamental
to understanding how systems change. Small
changes in what a system regards as the reward
will have a great effect on how the system
evolves.

Reward is the vector of change that deter-
mines which states are accessible to the system.
In a mechanical system the analogue to the
reward is the force or the field. In a social sys-
tem the analogues to the reward are ethics and
value structures. These rewards do not deter-
mine what final outcomes obtain, they deter-
mine which of various final outcomes can be
achieved.

Our increasing focus on target states in
Neurofeedback may be missing the more
important issue of how the brain distinguishes
right from wrong, regulated from dysregulated,
that is, what reward the brain pursues. By pro-
viding us with a multivariate fitness landscape
Z-score protocols have given us a quantitative
tool with which to ask this question.
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