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SCIENTIFIC ARTICLES

Parametric and Non-Parametric Analysis
of QEEG:

Normative Database Comparisons
in Electroencephalography,

a Simulation Study on Accuracy
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SUMMARY. Quantitative electroencephalography (QEEG) as a tool
for the diagnosis of neurological and psychiatric disorders is receiving
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increased interest. While QEEG analysis is restricted to the scalp, the re-
cent development of electromagnetic tomography (ET) allows the study 
of the electrical activity of all cortical structures. Electrical measures 
from a patient can be compared with a normative database derived from 
a large sample of healthy individuals. The deviance from the database 
norms provides a measure of the likelihood that the patient’s electrical 
activity reflects abnormal brain functioning. The focus of this article is a 
method for estimating such deviance. The traditional method based on 
z-scores (parametric) is reviewed and a new method based on percentiles 
(non-parametric) is proposed. The parametric and the non-parametric 
methods are compared using simulated data. The accuracy of both meth-
ods is assessed as a function of normative sample size and gaussianity for 
three different alpha levels. Results suggest that the performance of the 
parametric method is unaffected by sample size, given that the sample 
size is large enough (N > 100), but that non-gaussianity jeopardizes ac-
curacy even if the normative distribution is close to gaussianity. In con-
trast, the performance of the non-parametric method is unaffected by 
non-gaussianity, but is a function of sample size only. It is shown that 
with N > 160, the non-parametric method is always preferable. Results 
will be discussed taking into consideration technical issues related to the 
nature of QEEG and ET data. It will be suggested that the sample size is 
the only constant across EEG frequency bands, measurement locations, 
and kind of quantitative measures. As a consequence, for a given database, 
the error rate of the non-parametric database is homogeneous; however, 
the same is not true for the parametric method. 

KEYWORDS. EEG, QEEG, quantitative electroencephalography, nor-
mative database, norms, non-parametric

INTRODUCTION

Comparison to quantitative electroencephalography (QEEG) norms
is a valuable tool in both electrophysiological research and clinical
practice. Typically, the individual’s electroencephalogram is analyzed
in the frequency domain by means of time series analysis techniques
such as the Fast Fourier Transform, also called FFT (Beauchamp, 1973;
Brillinger, 1975; Lynn & Fuerst, 1989). A certain number of features
are extracted from the Fourier cross-spectral matrix, each one describ-
ing a particular feature of the brainwaves in a specified frequency range.
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These may include univariate and multivariate measures of absolute
power, relative power and mean frequency for each electrode location
in addition to coherence, phase and asymmetry for each electrode pair.
Each individual’s quantitative feature is called a descriptor. Descriptors
are compared to norms derived under the same conditions from a sam-
ple of healthy “normal” subjects, allowing the statistical estimation of
the deviance from the population norms. A recent trend in the electro-
physiological literature is the derivation of norms for electromagnetic
tomographic data (Bosch-Bayard et al., 2001). Electromagnetic tomo-
graphies (ET) make use of the EEG potential difference recording on
the scalp to estimate the current density within the brain. Functional im-
ages of the current density distribution are then superimposed onto MRI
standard atlas anatomical images (Talairach & Tournoux, 1988), pro-
viding true neuroimaging of electromagnetic brain activity either in the
time or in the frequency domain. The most popular ET is the Low Reso-
lution Electromagnetic Tomography, better known as LORETA (Fuchs,
Wagner, Kohler, & Wischmann, 1999; Pascual-Marqui, 1995, 1999;
Pascual-Marqui, Michel, & Lehmann, 1994). The derivation of norms
for current density data is analogous to the derivation of norms for
QEEG. In the former, electrical activity is not measured on the scalp at
the electrode level, but estimated within the brain in discrete cubic re-
gions of arbitrary size called voxels. Since, typically, one defines thou-
sands of voxels, but makes use of only 19 to 128 electrodes, the
comparison to ET norms poses more stringent statistical problems than
the comparison to the QEEG norms. In both cases the deviance from
each norm is usually expressed in terms of z-scores. The method as-
sumes gaussianity of the sampling distribution and hereafter will be re-
ferred to as “parametric.” The assumption of gaussianity is not always
matched with real data. The aim of this article is to propose an equiva-
lent “non-parametric” method based on percentiles for the estimation of
the deviance from the norms. Furthermore, by means of a simulation we
compared the two methods in terms of accuracy. The non-parametric
method applies equally well to QEEG and to ET data.

The Nature of EEG

It is clear that in utilizing EEG norms we make several assumptions
regarding the nature of human EEG. Essentially we assume that the hu-
man EEG is a stationary process with relatively high intra-subjects and
inter-subjects reliability. Those assumptions are critical for the validity
of the comparison process. Most of the initial work in this respect has
been done by E. Roy John and his associates (Ahn et al., 1980; John et
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al., 1977, 1980a, 1980b; John, Prichep, Fridman, & Easton, 1988). First,
it was shown that quantitative EEG measures follow developmental
equations, meaning that the frequency composition of the EEG reflects
the age and the functional status of the brain. In other words, in a normal
condition, normal values depend on and can be predicted by age (Ahn et
al., 1980; John et al., 1980a, 1980b; Gasser, Verleger, Bacher, & Stroka,
1988; Matthis, Scheffner, Benninger, Lipinsky, & Stolzis, 1980). For
example, the relationship may be quadratic on the log of the age. This is
the case of the dominant frequency power of the normal EEG, which in-
creases during brain development and declines slowly after age thirty or
so (Bosch-Bayard et al., 2001; John, Prichep, & Easton, 1987; Szava et
al., 1994). As a result, data from a wide age-range database is modeled
by means of polynomial regression equations in order to take into ac-
count the age differences (John et al., 1980a, 1980b). There is little evi-
dence suggesting that EEG norms may vary significantly as a function
of sex and hemispheric dominance (Matthis et al., 1980; Veldhuizen,
Jonkman, & Poortvliet, 1993). If such effects are found in the data, cor-
rections for these two factors should be applied as well. Second, it is
well known that the intra-subject spectral descriptors of the EEG are con-
sistent over short periods of time, probably as a result of stable homeo-
static regulations of the neurotransmitters (Hughes & John, 1999). This is
particularly true for the EEG recorded during a resting state where the
subjects have their eyes closed, and for relative power measures (John et
al., 1987). Another advantage of relative measures is that they are inde-
pendent of factors such as skin and skull thickness, being invariant in re-
spect to a global scale power factor that increases inter-subjects variability
(Hernández et al., 1994). For these reasons QEEG normative databases
are usually generated for the eyes-closed resting state only, and relative
power measures are preferred. Third, normative QEEG descriptors were
found to be independent from cultural and ethnic factors. High reliability
was found in studies from Barbados, China, Cuba, Germany, Holland,
Japan, Korea, Mexico, Netherlands, Sweden, the United States, and Ven-
ezuela (quoted and referenced in Hughes & John, 1999).

The independence of the EEG spectrum from cultural and ethnic fac-
tors is a remarkable characteristic of the EEG. It has been suggested that
it reflects the common genetic heritage of mankind (Hughes & John,
1999). A study on a large sample of 16-year-old twins found that the
variance of EEG power (76% to 89% depending on the frequency band)
is mostly explained by heritability (van Beijsterveldt, Molenaar, de
Gaus, & Boosma, 1996). The authors conclude that the EEG frequency
pattern is one of the most heritable characteristics in humans. Fourth,
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QEEG norms proved to have high specificity and sensitivity. When
subjects with no neurological or psychiatric dysfunction are compared
with norms, only a few descriptors show significant deviance (high
specificity). On the contrary, when subjects with neurological or psy-
chiatric dysfunctions are compared to norms, the number of significant
deviant descriptors greatly exceeds the number expected by chance
alone (high sensitivity; John, Prichep, Fridman, & Easton, 1988).

Comparisons to QEEG norms has proven useful in the diagnosis of
the attention deficit disorder with and without hyperactivity, learning
disabilities, dementia, schizophrenia, unipolar and bipolar depression,
anxiety disorders, obsessive-compulsive disorder, alcohol and substance
abuse, head injury, lesions, tumors, epilepsy, and cerebrovascular dis-
eases. (For a review see Hughes & John, 1999; Nuwer, 1988.) For many
other disorders and diseases, QEEG signatures have been found, but ad-
ditional research is needed to establish usefulness for diagnostic pur-
poses. The four characteristics of the EEG power spectrum mentioned
previously can be considered the fundamental properties of QEEG
since they enable objective assessment of brain integrity in persons of
any age, origin or background.

Signal Detection Theory and Diagnostic Systems

In this section we briefly review some important concepts in the litera-
ture on signal detection theory. These concepts will provide us with a
workable framework to compare the parametric and non-parametric
methods. Normative databases are essentially diagnostic systems. The
general task of diagnostic systems is to discriminate among possible
states of the object under study, and to decide which one actually exists.
In the case of normative databases, the task is to label the descriptor of the
new individual as “normal” or “abnormal,” or, using a more appropriate
terminology, as “non-deviant” or “deviant.” No diagnostic system is per-
fectly accurate. Modern detection theory treats the decision in probabilis-
tic terms, according to which there are two statistical hypotheses. In the
following discussion we will refer to a particular descriptor only. The ar-
guments readily extend to an indeterminate number of descriptors.

The study of the accuracy of diagnostic systems sprang from signal
detection theory and is a common subject in the biomedical literature
(Swets, 1988; Swets & Pickett, 1982). In comparing to norms the sys-
tem receives an input, the value of the descriptor, and makes one of two
possible decisions. We will refer to the input, or actual status of the new
individual, as the “event” (E). E can take on two mutually exclusive val-
ues. Let us label them as positive (+) or negative (�) which we will use
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hereafter instead of “deviant” and “non-deviant,” respectively. E+ is the
event corresponding to a true deviance from the norms, and E� is the
event corresponding to a true non-deviance from the norms. Notice that
the status of the subject is given and not observed. The system output is
the decision taken. We will refer to this output based on the decision of
the database and call it “diagnosis” (D). D can also take on two mutually
exclusive values. Following the same notation we will have D+ in the
case of a positive decision (the new individual is decided to be deviant)
and D� in the case of a negative decision (the new individual is decided
to be non-deviant). With two alternative events and two corresponding
diagnosis, the data of a test of accuracy is conveniently summarized in a
two-by-two contingency table (Table 1). We wish to obtain perfect cor-
respondence between the events and the diagnosis. That is, we wish that
the value of the descriptor for a new subject is labeled as deviant if it is
in reality deviant and non-deviant if it is in reality non-deviant. These
two outcomes correspond to the agreement (or concordance) between
the input and the output of the diagnostic system, referred to in Table 1
as true positive (TP) and true negative (TN). When there is no agree-
ment then we have an error, which can be of two types: false positive
(FP) and false negative (FN). If we consider proportions instead of raw
frequencies of the four outcomes, then just two proportions contain all
of the information about the observed outcomes (Swets, 1988). For in-
stance we normalize each raw frequency in a cell by the column total.
We have now:

TP = TP/(TP + FN); FN = FN/(TP + FN); FP = FP/(FP + TN);
TN = TN/(FP + TN)

In this way we obtain proportion estimations (analogous to probability
values) bounded between zero and one and the following properties hold:

TP + FN = 1; FP + N = 1

In other words, the elements of the couples TP-FN and FP-TN are com-
plements of each other and all the information about the observed out-
comes can be obtained considering only one element for each couple.
Furthermore, by normalizing the raw frequencies we obtain measures
independent of the prior probability of the event, meaning that the esti-
mation of errors will be independent of the proportions of positive
events (E+) and negative events (E�) entered in the system (Swets,
1988). This is a fundamental property of any accuracy measure of diag-
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nostic system. Figure 1 shows these normalized measures in a different,
albeit equivalent, perspective. Organizing the same data in a probability
tree diagram we see that what we are computing, equivalently, are the
probabilities to have positive or negative diagnosis (D+ and D�) condi-
tional on the probability that the event was positive or negative (E+ and
E�). For example, the rate of normalized true positives is the probabil-
ity to have a positive diagnosis given (conditional on the fact) that the
event was positive. In notation we write p(E+|D+). This quantity (nor-
malized TP) is also referred to as ‘sensitivity’ (SN) and is usually re-
ported together with the normalized TN, or p(E�|D�), which is referred
to as “specificity” (SP). SN is a measure of the ability of the system to
take a positive decision when it is indeed the case. Its complement is the
normalized FN proportion. The SP is a measure of the ability of the sys-
tem to take a negative decision when it is indeed the case. Its comple-
ment is the normalized FP proportion. According to what we have said
before, SN and SP summarize the contingency table exhaustively.

Marco Congedo and Joel F. Lubar 7

TABLE 1

Event (E) [Input]

Positive Negative

Diagnosis (D) Positive TRUE POSITIVE FALSE POSITIVE

[Output] Negative FALSE NEGATIVE TRUE NEGATIVE

E+

E�

D+ p(E+|D+) TRUE Positive “Hits”

D p(E+|D ) FALSE Negative� �

D+ p(E |D+) FALSE Positive False Alarm�

D p(E |D ) TRUE Negative� � �

FIGURE 1. Probability Tree. The same data summarized in Table 1 can be ar-
ranged, after normalization, in a probability tree. The tree shows the resulting
conditional probabilities. See text for details.



However, for the purpose of our simulation, a more complete depiction
of the errors committed by a normative database is achieved consider-
ing two additional measures. These are the inverse probability of a true
positive response and the inverse probability of a true negative response
(Guggenmoos-Holzmann & Houwelingen, 2000; Swets & Pickett, 1982).

Practically, what we want to know is the probability that a deviance
exists when the system says it does, and the probability that a deviance
does not exist when the system says it does not. These definitions are
not just a play on the words (see previous definitions of SN and SP). We
seek p(E+|D+) and p(E�|D�), respectively, the inverse probability of
SN and SP (to obtain those you need to invert the position of E and D).
These probabilities are easily computed arranging the data as in Figure
1 and using the formula defining the conditional probability or the
Bayes’ formula (Lipschutz & Lipson, 2000). The agreement E+D+ cor-
responds to the true acceptance of the alternative hypotheses “the new
individual is deviant on that descriptor,” while the agreement E�D�
corresponds to the true rejection of this alternative hypotheses. Accord-
ingly, we will refer to the quantity p(E+|D+) as “true acceptance” (TA)
and to the quantity p(E�|D�) as “true rejection” (TR). For reasons that
will be clear later, only considering together SN, SP, TA, and TR, will
enable us to perform a complete and fair estimation of the systematic er-
ror rate for the parametric and non-parametric methods.

The Parametric Method Based on Z-Scores

We are now ready to turn to the issue of deviance estimation. The
steps required in order to build a normative database according to the
parametric method (PM) and to the non-parametric method (nPM) are
listed in Table 2. The focus of this article is steps 5 and 7 in Table 2, and
in fact, these are the only two steps where the procedures for the PM and
the nPM differ. We are concerned here with the way in which the signif-
icance of the deviance is estimated. We will not discuss the sampling of
the normative subjects (which determine the homogeneity and repre-
sentativeness of the normative sample) or the issue of multiple compari-
sons (which is essential to avoid false positives). Based on our review of
the literature, all published normative EEG and QEEG databases esti-
mated the significance of the deviance according to a parametric method
based on z-scores (e.g., Bosch-Bayard et al., 2001; John et al., 1987;
Thatcher, 1999; Veldhuizen et al., 1993). The work of John and his col-
leagues was decisive for the development and assessment of this statis-
tical methodology (John et al., 1977). When z-scores at each electrode
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location are interpolated to construct brain topographical maps, the re-
sult is called “Significance Probability Mapping,” or SPM (Duffy,
Bartels, & Burchfiel, 1981). In step 3 of Table 2 we defined the de-
scriptors of our own LORETA database. According to the notation used
in Table 2, there are d = L � F descriptors for each normative subject
(i.e., for each subject there is a descriptor) for each combination of loca-
tion (electrode for QEEG and voxel for ET) and feature (quantitative
measure in a specified frequency range). For example, a descriptor is
the relative power in the alpha range, and another descriptor is the rela-
tive power in the theta range. Thus, each descriptor can be conceived as
a vector comprised of N values, where N is the number of subjects in the
database. Let us call xd the vectors of the descriptor d. For each feature,
the appropriate log-transformation is applied to all subjects (John et al.,
1987). The resulting data distribution of the vectors xd is approximately
normal with mean yd and standard deviation σd. In step 6 we considered
the L � F matrix of descriptors referring to a new individual to be com-
pared to the database. Notice that the L � F matrix for the normative da-
tabase is a matrix of vectors (i.e., a 3-D matrix). Instead for any new
individual the L � F matrix is a 2-D matrix of individual entries. Identi-
cal log-transformations are applied to this matrix as well. Let us call d
each entry of the descriptor matrix for the new individual. The task is to
obtain an estimation of the deviance, from the mean of the xd, for each

d.. Given gaussianity of the normative sample distribution, the devi-
ance of the new individual for each descriptor d is estimated as

zd = ( d � yd)/σd [1.0]

The mean of the normative sample is subtracted from the new indi-
vidual’s descriptor and the result is divided by the standard deviation of
the normative sample. The z-scores computed with 1.0 are accurate if
the normative sample distribution is normal (gaussian). The more the
normative sample distribution deviates from normality, the less the
z-scores will be accurate, leading to more and more false negatives and
false positives as a function of the distribution skewness and kurtosis.
Skewness refers to the third moment around the mean of a distribution
and is a measure of asymmetry. For example, a chi-square distribution
with one degree of freedom is said to be right-skewed. Kurtosis is the
fourth moment around the mean and is a measure of the peakedness of
the distribution. A “flat” distribution has higher kurtosis than a “peaked”
one. A theoretical standard normal distribution has skewness = 0 and
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kurtosis = 3. Given an approximate gaussian distribution, the more
these two values deviate from the theoretical values, the more the distri-
bution deviates from gaussianity. The problem with the rate of false
positives and false negatives in the case of non-gaussian distributions is
a subtle one. With estimation [1.0] we obtain different rates of false
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TABLE 2

Steps Parametric Method Non-Parametric Method

1 A reference Population (usually normal)
is defined and a sample of N subjects is
selected. Each subject is screened in
order to match inclusion criteria
previously chosen.
The N subjects constitute the database.

A reference Population (usually normal)
is defined and a sample of N subjects is
selected. Each subject is screened in
order to match inclusion criteria
previously chosen.
The N subjects constitute the database.

2 The set of F features is defined. Each
feature refers to a quantitative measure
for a particular frequency range. For
example, a feature could be “Delta
Relative Power” or “Alpha Coherence.”

The set of F features is defined. Each
feature refers to a quantitative measure
for a particular frequency range. For
example, a feature could be “Delta
Relative Power” or “Alpha Coherence.”

3 For each of the N subjects constituting
the database, for each location
(electrode or voxel) or pair of locations
(electrodes or voxels), L measures for
each of the chosen set of F features are
derived. Each combination of measure
and feature is called Descriptor.

For each of the N subjects constituting
the database, for each location
(electrode or voxel) or pair of locations
(electrodes or voxels), L measures for
each of the chosen set of F features are
derived. Each combination of measure
and feature is called Descriptor.

4 Database Data form a L � F � N matrix. Database Data form a L � F � N matrix.

5 For each feature, an appropriate
transformation (based on log) is applied
to all locations and subjects in order to
approximate gaussianity.

For each feature and location the N
data of the database subjects is sorted.

6 For each new individual to be compared
to the database, a corresponding data
matrix of descriptors (L � F) is derived.

For each new individual to be compared
to the database, a corresponding data
matrix of descriptors (L � F) is derived.

7 For each location (L) and feature (F),
i.e., for each descriptor, the deviation
from normality is expressed in terms of
z-scores, using the mean and standard
deviation of the descriptor computed for
all database subjects.

For each location (L) and feature (F),
i.e., for each descriptor, the deviation
from normality is expressed in terms of
discrete random variable sp (sample
proportion) expressing the proportion of
the subjects in the database falling
above (right-handed test) or below
(left-handed test) the new individual.

8 Additional statistics are performed in
order to correct for multiple
comparisons.

Additional statistics are performed in
order to correct for multiple
comparisons.



positives and false negatives depending on the side of skewness (left-
skewed or right-skewed distribution) and the side of the test (left-handed
or right-handed test). Similar arguments apply to the amount of kurtosis.

The effects of skewness and kurtosis on the rate of false positives and
false negatives are easily captured in a graphical fashion (Figure 2).
This figure is crucial for the interpretation of the results of this study and
should be analyzed carefully by the reader. Figure 2a depicts a norma-
tive sampling distribution very close to the theoretical gaussian. Sup-
pose that distribution is indeed gaussian. With an alpha level of 0.05,
the decision criterion of the database is to label as “deviant” all new ob-
servations with z-score > 1.96 or < �1.96 (the area under the curve for
z > 1.96 or z < �1.96 equals 0.025, so their sum is 0.05). Let us consider
the right-handed test first. A z-score exceeding 1.96 leaves on its right a
proportion of the area under the curve less than 0.025. So the diagnosis
will be positive (D+). By definition, a new individual’s score with p <
0.025 is positive (E+). The result is a concordance between the event
and the diagnosis (true positive).

Because of simmetricity, for a left-handed test the result will be the
same. For all z-scores comprised between �1.96 and 1.96 both the
event and the diagnosis will be negative (E� and D�), and we will
have concordance again (true negative). Thus if the normative sampling
distribution is truly gaussian, the normative database will virtually com-
mit no error. Figure 2b depicts a normative sampling distribution right
skewed. Notice that the mean of the distribution (blue line) is no longer
at the peak of the distribution since the density on the right side of the
distribution is bigger than the density on the left side. The two violet
vertical lines delimitate the interval including 95% of the density (area
under the curve). On the right of the right violet line the density is
0.025%, and so it is on the left of the left violet line. Let us consider the
right-handed test first. Because of skewness for a value of z slightly big-
ger than 1.96 (D+), the area under the curve on the right of the z-value is
greater than 0.025 (E�). The diagnosis is positive (z > 1.96), but the
event was not (area > 0.025). We have a false positive. In the hypotheti-
cal distribution of Figure 2b, the right-sided z-interval for which a false
positive will happen is indicated in green. For the left-sided test the situ-
ation is opposite. Here for some z > �1.96 (D�) the area under the
curve is already less than 0.025 (E+). The diagnosis is not positive, but
the event was indeed positive. We obtain a false negative. In Figure 2b,
the left-sided z interval for which a false negative will happen is, again,
indicated in green. If the distribution is left-skewed, we would have ob-
tained “mirror results” (i.e., false negatives on the right side of the dis-
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Z > 1.96; Alpha = 0.5 Area under
the curve = 0.25 RESULT: true +

Z > 1.96 (D ); Area under the
curve < 0.25 (E+)

� �

RESULT: false �

Z > 1.96 (D+); Area under the
curve > 0.25 (E )� RESULT: false +

FIGURE 2. Depiction of gaussian and non-gaussian distributions and the out-
come of the parametric method. (a): The normality case. If the sample is truly
gaussian then the outcome of the parametric normative database leads to true
positives and true negatives only. (b) The non-normality case. The sample dis-
tribution is right skewed. On the right side of the distribution we have false
positives, while on the left-side of the distribution we have false negative.



tributions and false positives on the left side). It is clear that with
skewed normative sample distributions we obtain different types of er-
rors on the two sides of the distribution. This means that what in reality
are equivalent, but opposite, magnitude of deviances, are interpreted by
the diagnostic system differently, according to the sign of the z-score. If
the amount of error generated is not negligible, this property of the para-
metric method would constitute a serious problem. Therefore we need
to estimate it. This will be accomplished in the simulation we are going
to present. Before that, let us introduce an alternative method for the es-
timation of the deviance, a non-parametric method based on propor-
tions.

The Non-Parametric Method Based on Proportions

In the previous section we have seen that the parametric method re-
lies on the assumption of normality of the distribution. As a practical
example, in a one-sided (right) testing framework, a z-score = 1.645
means that on the theoretical normal distribution 95% of the population
falls below that value. In other words, only 5% of the population exhib-
its a value equal or greater. The corresponding value on the other side of
the distribution (left-sided test) is �1.645, for which only 5% of the
population exhibits a value equal or smaller. A non-parametric method,
to obtain a similar result, is by use of the sample proportion (sp;
Lunneborg, 1999). Sample proportions are analogous to percentiles
and, like them, are obtained by sorting the sampling distribution values.
The method is easily illustrated with an example. Refer first to a
right-handed test with alpha = 0.05. In this case we label a new individ-
ual as deviant if his/her value is large as compared to the normative da-
tabase. For example, if the descriptor under analysis is the alpha relative
power at the electrode O2, then a deviant subject will show a large
power value as compared to the norm. Suppose our normative sample is
comprised of 20 subjects (N = 20). Let us sort the normative values
referring to any descriptor d in ascending order to obtain the sorted xd
vector:

xd : {2, 2.5, 2.8, 3.5, 3.6, 3.7, 4, 4.9, 5.2, 5.7, 8.4, 8.5, 11.1, 12.3,
14.8, 16.4, 18.9, 20 ,21, 25.4}

The 95th percentile is the value below which 95% of the subjects fall.
Values comprised between 21 and 25.4, leave on the right-side 5% of
the observations (5% of 20 = 1). A value bigger than 21 is associated
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with a p-value < 0.05. We obtain a p-value with a counting random vari-
able (e.g., Holmes, Blair, Watson & Ford, 1996). Let us define the dis-
crete random variable (RV), sample proportion (Φ) as the proportion of
values in the xd vector falling above the new individual’s value. Then Φ
is indeed a p-value, although it is discrete and not continuous. By defini-
tion, if no value in the xd vector exceeds the new individual’s value, then
Φ = 0. In this case in fact the new individual shows the most extreme
value and this is as significant (unlike) as it can possibly be. With this
definition the discrete RV Φ can take on N+1 values ranging from 0 to 1
and decreasing by multiples of 1/n. Φ = 1 (20/20 = 1) means that all nor-
mative subjects exceed the new individual’s value. In this case the new
individual’s value is the smallest and there is no evidence at all that the
new individual’s value is significant (keep in mind that if our test is
right-handed we have to ignore the extreme values on the left of the dis-
tribution, no matter how extreme they are). Φ = 0 means that the new in-
dividual exhibits the most extreme value.

Suppose our new individual’s value for the descriptor d is 22.3. Com-
paring this value to the sorted vector above we see that 5% of the obser-
vations fall above this value, thus Φ is 0.05 (there is only 1 observation
falling above the value 22.3; 1/20 = 0.05). Suppose the value is 1.8; Φ is
1 (20/20 = 1). Suppose it is 5.4; Φ is 0.55 (11/20). Φ = 0.05 can be con-
sidered deviant just like a z-score = 1.645. Both correspond to a proba-
bility of 0.05, with the difference that in a non-parametric fashion the
p-value is computed on the actual data and not as a result of the integrals
of the theoretical normal distribution.

The same method, reversed, is applied in the case of a left-handed
test. In this case the discrete random variable (RV) sample proportion
(Φ) is defined as the proportion of values in the xd vector falling below
the new individual’s value. By definition, if all values in the xd vector
are bigger than the new individual’s value, then Φ = 0. In this case the
new individual’s value is the smallest and this provides the strongest ev-
idence for his/her deviance on the left side of the distribution. With this
reversed definition the discrete RV Φ still can take on N+1 values rang-
ing form 0 to 1 and increasing by multiples of 1/n. Φ = 0 means that all
normative subjects exceed the new individual’s value. Φ = 1 means that
the new individual’s value exceed all normative subjects. Suppose
again our new individual’s value for the descriptor d is 22.3. For a
left-handed test, comparing this value to the sorted vector above we see
that 95% of the observations fall below this value, thus Φ is 0.95 (there
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are 19 observation falling below the value 22.3; 19/20 = 0.95). Suppose
the value is 1.8; Φ is, by definition, 0. Suppose it is 5.4; Φ is 0.45 (9/20).

If a two-tailed test is wished, then the median of the distribution is
computed. If the new individual’s value is on the right of the median
then a right-handed test as described is performed. On the other hand, if
the new individual’s value is on the left of the median then a left-handed
test is performed. Of course, for a two-tailed test we need to halve the al-
pha level at the two sides of the distribution, so that the total alpha level
equals indeed alpha. The performance of the non-parametric method
here described is not affected by non-gaussianity of the sampling distri-
bution. However its performance is a function of the sample size. Con-
sidering sample proportions we define a discrete RV, but the underlying
phenomenon is continuous, hence we lose “resolution.” In the follow-
ing simulation we assess the amount of errors generated because of this
loss of resolution and we compare it with the amount of error generated
by the parametric method because of non-gaussianity.

METHOD

Simulation Study

In order to perform a simulation aiming to evaluate the performance
of a normative database we need to define uniquely positive events (E+)
and negative events (E�) (i.e., we need to delineate conditions under
which a simulation entry is by definition deviant or non-deviant). Any
particular method to make a decision about the deviance of the event
will provide a diagnosis, either positive (D+) or negative (D�) accord-
ing to its own procedure, and being unaware of the real status of the
event. The agreement, or concordance, between the event and the diag-
nosis can then be estimated. By allowing a large number of events to
enter the system we obtain reliable estimations of concordance and dis-
cordance. In order to define unambiguous positive and negative events
we need to refer to theoretical distributions for which the “true” accep-
tance interval of the null hypothesis is known. For instance, let us set the
type I error (alpha) as 0.05. For a random variable z distributed as a stan-
dard normal we accept the null hypothesis for �1.96 < z < 1.96. In other
words, if z is comprised between �1.96 and 1.96, we accept the null hy-
pothesis. In terms of a normative database this means that the new indi-
vidual is considered to be normal. In our simulations the normative
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sample of reference was emulated by means of normal distributions.
New individuals were emulated as individual points generated with the
same density function as the normative reference. For all practical pur-
poses they constitute events for which the status (E+ or E�) is known a
priori on the basis of the distribution of the normative reference.

In the discussion that follows we will call each event submitted to di-
agnosis a simulation entry. As an example of the procedure followed to
define simulation entries consider the following: given a normative ref-
erence sample distributed as a random normal, alpha = 0.05, and a right
handed test, we know a priori that any simulation entry with p(z) <
0.025 is positive. For each simulation entry, we computed the database
outcome (D+ or D�) with both the parametric and non-parametric
method, independently one from the other. According to what is seen
above, the parametric diagnosis is based on equation [1.0], and the
non-parametric diagnosis is based on the RV sample proportion. For
each simulation entry there will be a concordant or discordant outcome
and this will add a raw frequency in a table just like Table 1. This consti-
tutes an outcome among four possibilities (Table 1).

We submitted 100,000 simulation entries, under identical conditions,
for each normative reference sample considered. This allowed reliable
estimations of sensitivity (SN), specificity (SP), true acceptance (TA)
and true rejection (TR). The evaluation of concordance was repeated
varying sample size and gaussianity of the normative reference sample.
This way we could assess the error rate of the parametric and non-para-
metric methods. In addition, we repeated the simulations for three alpha
levels (decision criterion of the system). The latter variable must be in-
cluded because all of the four measures of accuracy we chose depend on
the decision criterion used (Swets & Pickett, 1982). Therefore we need
to monitor the error rate as a function of alpha. Finally, two simulations
for all the above conditions are needed with one evaluating the right-
handed test, and the other evaluating the left-handed test. The reason for
this further splitting is that, as we have shown above in the case of
skewed distributions, the parametric method generates two different
types of error at the two sides of the distribution and we do not want to
confuse them considering the outcomes of a two-sided test.

A total of 486 (9 � 9 � 3 � 2) simulations were performed, each one
evaluating 100,000 simulation entries. The simulations were performed
by a computer program written in Delphi Pascal (Borland Corporation).
All together they required approximately four hours computation time
on a Dell personal computer equipped with a 1.8 GHz Pentium 4 pro-
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cessor and 512 Mb of RAM. Normative samples, the xd vector de-
scribed above, were emulated by means of a gaussian random number
generator function embedded in Delphi Pascal. The function (called
randG) generates random samples gaussian-distributed with a specified
mean and standard deviation. For all simulations we used mean = 10
and variance = 1. In this way all random samples were non-negative.
This was required by the skewness manipulation we chose (performed
by means of a power transformation as seen below). Each distribution
actually employed in the simulation was computed as the (sorted sample-
by-sample) average of 10,000 gaussian distributions generated with the
randG function. This ensured that correspondent distributions were
very similar across different conditions of the simulation.

Alpha Level Manipulation

The alpha level is the decision criterion employed in the normative
database. It quantifies the amount of evidence requested by the system
before a positive outcome is issued. Three alpha levels were considered:
0.05, 0.025, and 0.0125. Since all tests were one-tailed, these three lev-
els correspond to the two-tailed test alpha levels 0.01, 0.05, 0.025. Pub-
lished databases considered in our review (e.g., Bosch-Bayard et al.,
2001; John et al., 1987; Thatcher, 1999; Veldhuizen et al., 1993) use the
fixed alpha level 0.05. In our simulations this corresponds to alpha =
0.025. In addition to this alpha level we considered a more stringent cri-
terion (alpha = 0.0125), and a more lenient criterion (alpha = 0.05). The
reason is that the measures of accuracy we used are independent of the
prior probabilities of positive or negative events, but are not independ-
ent of the decision criterion (Swets & Pickett, 1982). Since we expect
different error rates solely because the decision criterion is changed, we
might want to monitor the behavior of our system as a function of the
decision criterion.

Sample Size Manipulation

Nine sample sizes were considered, ranging from 80 to 720 with an
increment of 80 (80, 160, 240, 320, 400, 480, 560, 640, 720). The choice
for the increment was contingent. It can be shown that the accuracy of
the non-parametric method for the minimum alpha level we considered
(alpha = 0.0125) increases discretely in steps of 80 (sample size). The
reason is intuitive. We show that the RV sample proportion (Φ) can take
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on only discrete values ranging between 0 and 1 increasing by a factor
of 1/N. Consider the alpha level alpha = 0.0125. With N = 80, the possi-
ble values that the RV Φ can take, sorting them in ascending order, are
0, 0.0125, . . . 1. With N = 160, they will be 0, 0.00625, 0.0125, . . . 1. As
soon as N reaches 160, the random variable Φ gains resolution, having
the ability to take on three possible values less than the alpha level (p <
alpha).

Gaussianity Manipulation

Gaussianity was manipulated transforming the normal averaged dis-
tribution with a power function. For each level of gaussianity consid-
ered each sample of the normative distribution was raised to a fixed
power. This resulted in a skewed distribution respecting the order of the
original samples. Nine levels of gaussianity were considered, corre-
sponding to nine different powers ranging from 1 to 3 with an increment
of 0.25 (1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3). The first distribution al-
ways remained unchanged after transformation (power of 1) and consti-
tuted a true empirical random gaussian distribution. In this case the
performance of the parametric method was expected to be excellent.
Table 3 reports the mean and standard deviations of the skewness and
kurtosis of the empirical distributions actually used in the left-handed
test and right-handed test simulations. Mean and standard deviations
were computed across the different sample sizes used in the simulations
for each level of the variable manipulating the gaussianity of the distri-
bution. From Table 3 we can see that because of the averaging proce-
dure, the gaussian random distributions all had very similar skewness
and kurtosis for all the levels of sample size (small standard deviation),
yielding almost identical distributions to be used in the left-handed test
and right-handed test simulations. Table 3 also shows how skewness
deteriorates with higher powers.

RESULTS

To capture the essence of our results we need to consider again Fig-
ure 2b. Let us anticipate the results for the parametric method. For a
right-handed test, since the distribution has positive skewness, we ex-
pect three possible outcomes: E+|D+ (red area on the right of the distri-
bution), E�|D+ (green area on the right of the distribution), and E�|D�
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(all the area left). The only discordant outcome (error) is the E�|D+
pairing. These are false positives. The error is due to the fact that al-
though the area on the left of the observation is bigger than alpha (E�),
the z-score computed with [1.0] is bigger than 1.96, leading to a p-value
less than alpha (D+). Since this error happens on the right side we wish
to compare it to the TP proportion. In other words (referring to Figure
2b), we wish to compare the green area (error) with the red area on its
right. We will show that the specificity measure (SP) does not give us
this information, but the true acceptance measure (TA) does. Remem-
ber that SP has been defined as TN/(FP+TN). Remember also that TN =
p(E�|D�) and FP = p(E�|D+). In our simulations most entries are neg-
ative events. In fact the simulation entries were always random samples
of the normative sample distribution. Hence (1-alpha)% of them is by
definition a negative event and will fall in the E�|D� (TN) category.
The remaining will include E+|D+ and E�|D+ outcomes. Even if the FP
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TABLE 3

Distribution Mean Sk Sd Sk Mean Kt Sd Kt
Pw of 1.00 0.000 0.002 2.869 0.085
Pw of 1.25 0.070 0.004 2.870 0.082
Pw of 1.50 0.140 0.006 2.884 0.084
Pw of 1.75 0.209 0.009 2.916 0.091
Pw of 2.00 0.279 0.010 2.962 0.093
Pw of 2.25 0.347 0.015 3.022 0.103
Pw of 2.50 0.417 0.017 3.100 0.113
Pw of 2.75 0.486 0.021 3.192 0.124
Pw of 3.00 0.556 0.024 3.299 0.137

Right-handed test

Distribution Mean Sk Sd Sk Mean Kt Sd Kt
Pw of 1.00 0.000 0.001 2.869 0.085
Pw of 1.25 0.070 0.004 2.870 0.083
Pw of 1.50 0.140 0.006 2.886 0.086
Pw of 1.75 0.210 0.008 2.916 0.089
Pw of 2.00 0.279 0.012 2.962 0.095
Pw of 2.25 0.348 0.015 3.026 0.102
Pw of 2.50 0.418 0.017 3.104 0.111
Pw of 2.75 0.486 0.021 3.193 0.125
Pw of 3.00 0.555 0.025 3.298 0.141

Left-handed test



proportion is large as compared to the TP proportion (the green area is
big as compared to the red area) the specificity will be excellent, since it
does not compare FP with TP, but FP with TN. On the other hand TA,
defined as p(E+|D+), has as complement p(E�|D+). Its value is the
right estimation of errors for this simulation (i.e., it compares the FP
proportion to the TP proportion). This is the information we need. It is
telling us among the events with positive diagnosis (green area + red
area), how many, in proportion, were in reality positive (TP: red area) as
compared to negative (FP: green area).

Consider next the left-handed test. Refer again to Figure 2b. Here we
expect three different possible outcomes: E+|D+ (red area on the left of
the distribution), E+|D� (green area on the left of the distribution), and
E�|D� (all the area left). The only discordant outcome (error) is the
E+|D� pairing (false negative), which is different from the type of error
found on the right side. Here the error arises because although the area
on the left of the observation is less than alpha (E+), the z-score com-
puted with equation [1.0] is bigger than �1.96 (non-significant), lead-
ing to a p-value less than alpha (D�). We obtain some false negatives.
Again, we wish to compare them to the TP proportion, and not to the TN
proportion. In this case the sensitivity measure (SN) will give us this in-
formation. Remember that SN has been defined as TP/(TP+FN). Re-
member also that FN = p(E+|D�) and TP = p(E+|D+). For a left-handed
text, (1-alpha)% of the outcomes will fall in the E�|D� category (no-
tice that on this side of the distribution errors [FN] come at the expense
of the TP proportion and the TN proportion is exactly [1-alpha]%). The
remaining 5% will include E+|D+ and E+|D� outcomes. SN compares
indeed TP to FN. This result is telling us that among the positive diag-
nosis how many, in proportion, were in reality positive events (TP) as
compared with negative events (FN).

Errors with the non-parametric method follow a different pattern. For
this method the appropriate measure of accuracy turns out to be the true
acceptance (TA) for tests on both sides of the distribution. This means
that for both the right-handed and left-handed test, the non-parametric
method results in only three outcome pairings: the two concordant pairs
E+|D+, E�|D�, and the discordant pair E�|D+. In other words, the
non-parametric method tends to issue positive diagnosis when it is not
the case.

In summary, considering that real normative distributions can be
both left and right skewed, with the parametric method we expect both
FP and FN errors depending on the side of the test and on the side of the
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skewness. With the non-parametric method we expect FP only, regard-
less the side of the test and the side of the skewness. We now show
quantitative results of these errors. As expected, the accuracy of the
parametric method was found to be the same (with little random error)
at different sample sizes (N > 100) for all levels of non-gaussianity and
alpha. Thus it will be shown as a function of non-gaussianity and alpha
levels only. The accuracy of the non-parametric method was found to be
the same (with little random error) at different non-gaussianity levels
for all levels of sample size and alpha. Thus it will be shown as a func-
tion of sample size and alpha levels only. In every simulation per-
formed, two out of the four measures of accuracy employed in this
study always displayed a value of 1.0 (perfect accuracy) for all levels of
the manipulated variable (i.e., they do not constitute a valuable test).
The reason why this is the case has just been discussed. For example, for
a right-handed test we do not expect false negatives for either method
regardless the gaussianity, sample size, and alpha. Of the remaining two
measures only the critical measure is reported. We have just seen that
this is either the SN or the TA for the parametric method, and the TA for
the non-parametric method. The critical measure always displayed val-
ues of accuracy less then or equal to 1.0 and changed monotonically
across the levels of the manipulated variables.

Right-Handed Test

Results for the right-handed test are reported in Figure 3. Figure 3a
refers to the parametric method (PM), while Figure 3b refers to the
non-parametric method (nPM). The blue lines indicate the 0.95 level of
a measure of accuracy. This level of accuracy can be considered excel-
lent for any diagnostic system. The red lines indicate the 0.85 level of a
measure of accuracy. This level of accuracy can be considered the mini-
mum required for a normative database. Figure 3a reports the PM true
acceptance (TA) proportion as a function of gaussianity of the norma-
tive reference sample (x-axis) for the three alpha levels employed. As
explained in the above discussion, this is the critical test for the para-
metric method for a right-handed test when the reference distribution is
right skewed. The TA is excellent in the case of normality of the refer-
ence distribution (power of 1) and deteriorates rapidly as the power in-
creases; for power > 1.5 the TA proportion for the usual alpha level
(0.025) is unacceptable (< 0.85). The critical test of the nPM method
under identical conditions is shown in Figure 3b. This graph plots the
TA proportion as a function of the sample size. As expected, the perfor-
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mance of the nPM increases monotonically with N. For the usual alpha
level (0.025), the performance is acceptable (TA > 0.85) for N = 160,
and excellent (TA > 0.95) for N = 400 or more.

Left-Handed Test

Results for the right-handed test are reported in Figure 4. Figure 4a
refers to the parametric method (PM), while Figure 4b refers to the
non-parametric method (nPM). The blue lines indicate the 0.95 level of
a measure of accuracy. This level of accuracy would be considered ex-
cellent for any diagnostic system. The red lines indicate the 0.85 level of
a measure of accuracy. This level of accuracy can be considered the
minimum required for a normative database. Figure 4a reports the PM
Sensitivity (SN) proportion as a function of gaussianity of the norma-
tive reference sample (x-axis) for the three alpha levels employed. As
explained in the above discussion this is the critical test for the paramet-
ric method for a left-handed test, when the reference distribution is right
skewed. The SN is excellent in the case of normality of the reference
distribution (power of 1) but deteriorates rapidly as the power increases.
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E+|D+ Concordance
(complement: E |D+)�

E+|D+ Concordance
(complement: E |D+)�

FIGURE 3. Results of the simulations for the RIGHT-HANDED test. Reported
on the vertical axis are the true acceptance (a) for the parametric method, and
the true acceptance (b) for the non-parametric method. For the parametric
method results are shown as a function of non-gaussianity (horizontal axis) of
the normative reference distribution and alpha level (a). For the non-parametric
method results are shown as a function of sample size (horizontal axis) and al-
pha level (b). The green line indicates where the measure of accuracy is equal
to 0.95 (very good level of accuracy). The red line indicates where the measure
of accuracy is equal to 0.85 (acceptable level of accuracy).



The decline is faster for the left-handed test than for the right-handed
test (compare with Figure 3a). This phenomenon can easily be captured
inspecting the two tails of the distribution in Figure 2b and considering
the definition of SN and TA. On the left side errors (green area) grow at
the expense of the true positive proportion (red area), while on the right
side errors (green area) grow at the expense of the true negative propor-
tion (all the area remaining on the left of the green area). The true posi-
tive proportion (red area) remains unchanged. For power > 1.25 the SN
proportion for the usual alpha level (0.025) is already unacceptable
(< 0.85). The critical test of the nPM method under identical conditions
is shown in Figure 4b. This graph plots the TA proportion as a function
of the sample size. As for the right-handed test, the performance of the
nPM increases monotonically with N. For the usual alpha level (0.025),
the performance is acceptable (TA > 0.85) for N = 160, and excellent
(TA > 0.95) for N = 480 or above. Allowing few random errors, these
results for the nPM are comparable to those obtained for the right-
handed test. In fact the nPM performs equally at both sides of the distri-
bution, no matter what the skewness is.
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E+|D+ Concordance
(complement: E+|D )�

E+|D+ Concordance
(complement: E |D+)�

FIGURE 4. Results of the simulations for the LEFT-HANDED test. Reported on
the vertical axis are the sensitivity (a) for the parametric method, and the pro-
portion of true acceptance (b) for the non-parametric method. For the paramet-
ric method results are shown as a function of non-gaussianity (horizontal axis)
of the normative reference distribution and alpha level (a). For the non-para-
metric method results are shown as a function of sample size (horizontal axis)
and alpha level (b). The green line indicates where the measure of accuracy is
equal to 0.95 (very good level of accuracy). The red line indicates where the
measure of accuracy is equal to 0.85 (acceptable level of accuracy).



CONCLUSIONS

A total of 486 simulations were performed in order to compare two
methods for the comparisons to EEG norms. The parametric method is
based on z-scores and has been employed so far. The non-parametric
method is based on sample proportions or, equivalently, percentiles and
has been proposed in this paper to overcome some problems related
with the use of the parametric method. Each simulation estimated the
error rate in the diagnostic predictability of the two methods for both
left-handed and right-handed tests. Variables manipulated included the
decision criterion of the normative database (alpha level), sample size,
and non-gaussianity of the normative reference sample. For each com-
bination of the side of the test and the method employed, the critical test
was individuated. This was one of the four accuracy measures consid-
ered in this study [sensitivity (SN), specificity (SP), true acceptance
(TA), and true rejection (TR)]. The performance on the critical tests
provided a framework for comparing the two methods. The perfor-
mance of the parametric method (PM) was found to be unrelated to the
sample size, given that N is not too small. With N < 80 the performance
of the method starts deteriorating, therefore we conclude that this inde-
pendence is true for approximately N > 100. The performance of the
parametric method was found related to the non-gaussianity of the nor-
mative sample distribution. Empirical distributions for which the para-
metric performance can be considered acceptable have to be very close
to a true theoretical gaussian distribution.

The performance of the non-parametric method was unaffected by
the non-gaussianity of the normative reference distribution but was af-
fected by the sample size. Acceptable (> 0.85) accuracy (enough resolu-
tion) can be attained with N = 160. Excellent accuracy (> 0.95) can be
attained with no less than around 440 subjects. This result contradicts
the common notion that non-parametric statistics “should be used with
a small sample size.” For both methods and for both the right-handed
and left-handed tests, the critical tests result in less accuracy the smaller
the decision criterion (alpha level). This important result contradicts the
intuitive notion that reducing the alpha level would lead to a smaller rate
of false positives. This is definitely not the case. Indeed alpha affects
positively all measures of accuracy proportionally to its value; the big-
ger the alpha level, the better the accuracy. This result is explained with
a specific example. The reasoning extends readily to all possible situa-
tions. Consider the left-handed test for the parametric test. The critical
test for this situation is the sensitivity (SN). Remember the SN is de-
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fined as TP/(TP+FN) and that under these circumstances the database is
going to issue only TP, FN and TN outcomes. SN increases proportion-
ally as TP increases and as FN decreases. Refer to Figure 2b and look at
the left tail of the distribution. This figure refers to a one-handed alpha
level equal to 0.025. Imagine we halve the alpha level. Both the green
area under the curve (FN) and the red area under the curve (TP) will de-
crease (they will be displaced on the left and here the height of the curve
is smaller). However the red area will decrease more than the green
area, the reason being that the curve is shorter at the left extremity. As a
result, the ratio TP(TP+FN) will be smaller (i.e., sensitivity will be
smaller). Doubling the alpha level, on the contrary, will result in a sensi-
tivity increase.

Implications of Our Simulations for Database Development

We have been shown by means of simulations that the performance
of the parametric test is impaired as a function of skewness. Non-
gaussianity due to high or low kurtosis is known to affect the test even
more (Pollock, Schneider, & Lyness, 1990). These results are not a sur-
prise. The problem is to assess how good the approximation to gaussi-
anity for QEEG and ET the data is, and to evaluate the advantages
acquired by using an alternative method. Regarding the approximation
to gaussianity the literature is scattered and inconsistent. Only a few
studies have been done investigating specifically the gaussiantity ap-
proximation for QEEG data and none, to our knowledge, have investi-
gated the gaussianity approximation for electromagnetic tomographic
(LORETA) data. Nonetheless the same transformations applied for
QEEG measures have recently been applied to this kind of data to gen-
erate a normative database (Bosch-Bayard et al., 2001).

Electroencephalographic data in the frequency domain is markedly
non-gaussian. Each measure is distributed in a particular way and the
theoretical studies on their distribution are not exhaustive. For example,
the power spectrum (absolute power) is distributed approximately as a
chi-square (Beauchamp, 1973; Brillinger, 1975). The degrees of free-
dom (df) are a function of the EEG recording length (number of ep-
ochs), the FFT frequency resolution, wideness of the frequency bands
considered, the time-domain tapering employed, and other technical
factors. One should take into consideration all these factors in estimat-
ing the df associated with a power spectrum chi-square distribution. At
the time when the databases were first developed (1970s) a simpler ap-
proach was employed. For each measure a suitable data transformation
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(based on log transformations) was used to approximate gaussianity.
The idea was to allow a general method for the assessment of the devi-
ance from the norms and also to allow parametric statistics to be em-
ployed in research comparing different groups. A few specific studies
provided evidence of the appropriateness of these transformations (Gasser
et al., 1982; Oken & Chiappa, 1988; Pollock et al., 1990). Other evi-
dence has been provided in papers describing the construction of nor-
mative databases, but they are not as stringent from a statistical point of
view (e.g., John et al., 1988).

A review of the literature and a close analysis of a large normative
database convinced us that the gaussian approximation is not good
enough to allow the use of parametric statistics. All specific studies
found that the log-based transformations approximate gaussianity fairly
well, but all of them found exceptions. Gasser et al. (1982) found excep-
tions in delta, theta, beta 1 and beta 2 for the absolute power measures.
Oaken and Chiappa (1988) found that approximately one-eighth of the
descriptors for absolute power remain non-gaussian after transforma-
tion. Relative power behaved a little better. Pollock et al. (1990) found
the transformation of amplitude (square root of absolute power) to be
excellent in all frequency bands but in theta. While John and his col-
leagues (1987, 1988) insist on data transformation, Thatcher (1998)
found that for all measures, with the exception of phase, the untrans-
formed data approximated gaussianity better than the transformed data,
contradicting all previous results. It is worth noting that the sample size
used in the John and Thatcher studies was similar, so the unreliability of
results cannot be explained by means of “deus ex machina” such as the
central limit theorem. Furthermore, all of these studies used different
montages, electrode reference, age range of subjects and even differ-
ent measures. Finally, if in the case of QEEG a few proportions of de-
parture from gaussianity can be ignored, for electromagnetic tomography
(LORETA) data it cannot be done capriciously.

Before compiling a parametric database one has to check that the dis-
tribution for all descriptors is approximately gaussian. In the case of ET
data this involves tens of thousands of checks. With such a large num-
ber and all the variability of EEG data, many of them will not pass the
tests. The question is how should one deal with them? Should the
non-gaussian descriptors be excluded from the database? Even ignoring
this problem, we will be left with a normative database in which accu-
racy is different for each descriptor. In fact, we have shown that the ac-
curacy is a function of skewness and each approximation to gaussianity
will lead to different skewness levels. Furthermore, the outcome of the
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normative database will be different on the two sides of the distribution.
These are not desirable characteristics for a normative database. One
may overcome all of these problems by using a non-parametric ap-
proach, given that the sample size is large enough. It is fortunate that
normative databases of clinical usefulness are constructed on the basis
of large samples. Actually the sample sizes commonly employed are so
large (500-600) that they would lead to more than 96% accuracy if the
non-parametric method described in this article was employed. Further-
more, the validity of results would be the same for the right-handed and
the left-handed test, for all electrodes, frequency bands and for what-
ever measure is employed regardless of its distribution. In fact the sam-
ple size is the only true constant across descriptors. We have shown in
this article that the accuracy of the non-parametric method, given a
fixed alpha level, depends solely on sample size. This is the distinct ad-
vantage of the non-parametric method. The extension of the non-para-
metric method to ET data and to new electroencephalographic measures
is straightforward. We also contend that developmental equations and
other kinds of between-subject differences can be taken into account
while compiling a non-parametric normative database. For instance,
polynomial regression equations based on age can be computed. Each
descriptor value can be normalized over its predicted value to remove
any unwanted trend in the data. In the 1970s it was not easy to perform a
non-parametric test. Computers were slow and the computations re-
quired could took hours. Today they would take minutes. Another pos-
sible reason why non-parametric methods have not been employed is
that they require more intense computer programming. However one
does not have to check data gaussianity, nor struggle to find appropriate
data transformation, nor be concerned about the distribution of new
measures any longer. By using a non-parametric method one would ac-
tually maximize resources and the prediction of clinical versus non-
clinical membership would be improved.
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