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NORR.IATIVE EEG DATABASES EG 
BIOFEEDBACK 

Robert W. Thatcher, Ph.D. 

Reference EEG Databases and Neurotherapy 

Electroencephalograhic (EEG) 
biofeedback is an operant conditioning 
procedure where by an individual modifies 
the amplitude, frequency or  coherency of 
the neurophysiological dynamics of their 
own brain (Cohen, 1975; Blanchard and 
Epstein, 1978; Rosenfeld, 1990). The exact 
physiological foundations of ths process are 
not well understood, however, the practical 
ability of humans and animals to  directly 
modify their EEG through feedback is a 
well established fact (Fox and Rudell, 1968; 
Rosenfeld et  al, 1969; Hetzler et al, 1977; 
Sterman, 1996). The ease by which direct 
modifications of EEG can be accomplished 
is partly responsible for the rapid, almost 
explosive r ise in the use of EEG biofeedback 
for the purposes of therapeutic amelioration 
of a wide range of psychological and 
neurological disorders (see reviews by 
Cohen, 1975; Rosenfeld, 1990; Lubar, 1997). 

The therapeutic application of EEG 
biofeedback is often referred to as 
"Neurotherapy'l and, most importantly, the 
therapeutic efficacy and success of 
Neurotherapy is a force that is driving the 
development and clinical application of 
EEG biofeedback (Lubar, 199'7). 

As pointed out by several studies 
(Johnson, 1997; Lubar, 1997; Striefel, 1995; 
Schwartz, 1993, EEG biofeedback is not a 
"kids toy" because in the hands of a 
professional it is a strong and effective 
methodology and must be treated with 
great respect and competence. The reader 
must be reminded that modifications of 
one's own EEG is a very serious 
undertaking because it involves direct 

manipulations of neuronal excitabilities and 
neural connections in the brain. Although 
no ill effects of EEG Biofeedback have been 
noted to  date, nonetheless caution, 
professionalism and knowledge are the 
prerequisite requirements for the 
application of this technique. It is in this 
spirit that the present paper reviews 
electrophysiological analyses as they 
pertain to EEG biofeedback and discusses 
the use of a "Normative EEG Database" 
(NDB) t o  aid the professional 
Neurotherapist in evaluating the 
neurological status of their patients prior to 
therapy, to evaluate the course of their 
therapy and to provide a guide for the 
development of therapeutic strategies using 
EEG biofeedback. I t  is assumed that 
knowledge about the electrophysiology and 
anatomy of the brain, which are being 
modified by the patient under the guide of 
the Neurotherapist, is important and that 
deeper knowledge can only benefit the 
patient, the therapist and the field of 
Neurotherap y. 

It is likely that in the future, a 
reference' "Normative EEG Database" 
(NDB) will be commonly used for purposes 
of EEG biofeedback and that Normative 
EEG Databases (NDBs) will play an 
increasingly important role in the clinical 
evaluation and treatment of patients. As 
discussed in more detail in section 5.0 there 
are three primary uses of a NDB: 1- to  
assess the neurological status of the patient 
and to determine to what extent there is a 
neurological basis of the patient's 
complaints (i-e., the issue of Organicity ), 2- 
to identify possible strengths and 
weaknesses in the organization and 
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electrophsiological status of the patient's 
brainin order to aid in the efficient and 
optimal design of Neurotherapy (i.e., the 
issue of Therapy Design ) and, 3- to  increase 
efficiency and to objectively evaluate the 
efficacy of treatment by comparing the 
patient's EEG before, during and after 
treatment (i.e., the issue of Treatment 
Evaluation). Currently, there are only a 
small number of EEG normative reference 
databases that seem adequate to meet the 
minimal standards necessary for 
responsible and e t h i d  uses of a NDB in the 
field of EEG Biofeedback. A growth in the 
number of normative or reference EEG 
databases is expected to  grow over time. 

Active Tasks vs Eyes Closed and Eyes Open 
QEEG Databases 

An active task refers to the recording 
of EEG andor evoked potentials (EPs) 
while a subject performs some kind of 
perceptual or cognitive task. Many EEG 
and EP studies have reported reproducible 
changes in brain dynamics which are task 
dependent. Such studies are important for 
understanding normal and pathological 
brain processes responsible for perceptual 
and cognitive function. In contrast, an eyes 
closed or eyes open EEG state involves an 
alert subject simply sitting quietly and not 
moving. The eyes closed and/or eyes open 
conditions are commonly used as reference 
normative EEG databases, Because of the 
simplicity and relative uniformity of EEG 
recording conditions. Such databases can 
be compared across laboratories and 
populations with relatively high reliability. 
Active tasks, on the other hand, are 
dependent on the intensity of stimuli, the 
back ground noise of the room, the distance 
between the subject and the stimuli, the 
subject's understanding of the task 
instructions, the subject's motivation, etc. 
These are very difficult to control across 
experimenters or across clinics for the 
purposes of constructing a "reference" 

normative EEG database. It is for this 
reason that there are few if any active task 
reference normative EEG databases, 
whereas there are at least three normative 
eyes closed lifespan EEG normative 
databases (e.g., E. Roy John (John, et al, 
197'7; 1988); Frank Duffy (Duffy et al, 
1994) and Robert Thatcher (Thatcher 
1987). 

It should be kept in mind that the 
alert eyes closed EEG state is very much an 
active state, e.g., there is still about 20% 
glucose metabolism of the whole body 
occurring in the brain of an eyes closed 
subject (Herscovitch, 1994). During the 
eyes closed state, there is dynamic 
circulation of neural activity in connected 
cortical, reticular and thalamo-cortical loops 
(Thatcher and John, 1977; Nunez, 1981). 
The allocation of neural resource is simply 
different from when the subject is directing 
hisher attention to  an experimentally 
controlled situation. Active tasks are very 
important because they reflect the 
switching and dynamic allocation of neural 
resource and they do have clinical 
importance. However, in the present paper 
only the alert and resting EEG have been 
used for the purposes of a reference EEG 
normative database and, therefore, this 
paper will only concern the EEG recorded 
&om during conditions. This emphasis 
occurs only fi-om a practical point of view 
and comparisons between resting EEG 
conditions and active EEG conditions 
should be encouraged. A good and stable 
resting EEG normative database can 
enhance and facilitate the understanding of 
the underlying neural dynamics and clinical 
condition of a patient during an active task. 

Therefore, one purpose of the 
present paper is to  discuss the minimal 
standards for the creation and use of a 
resting EEG normative database. This 
discussion will emphasize the Thatcher 
normative EEG database or NDB (Thatcher 
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et al, 1983; 1986; 1987; 1989; Thatcher, 
1992; 1994a) which has been in use 
throughout much of the EEG Biofeedback 
community since 1992. Between 1987 and 
1994 a raw mean and standard deviation 
version of the Thatcher NDB was in use. 
The raw means and standard deviations 
exhibited discontinuities at some ages and, 
therefore, in order to improve the statistical 
stability a &point Savisky and Golay 
(1964) smoothing of the Thatcher NDB is 
now used (see Thatcher, 1991a; 1992 for 
smoothing details). The reader should note, 
however, that databases other than the 
Thatcher NDB are available for clinical and 
research purposes and each of these 
databases contain their own strengths and 
weaknesses. It is not the goal of the 
present paper is to examine and compare 
each currently available EEG database. 
While some comments will be made 
regarding some of the databases, these 
comments are primarily in the general 
context of discussion of a given topic. The 
emphasis on the Thatcher NDB in the 
present paper is only because this is the 
NDB that this author is most familiar with 
and it should not be construed that this 
database is necessarily better or the only 
NDB available. 

Full Disclosure of fhe Content of EEG Normative 
Data bases 

Currently there are several available 
normative resting EEG databases which 
may have relevance for clinical diagnoses 
and evaluation of therapy. However, the 
extent to  which these databases are useful 
is largely determined by the degree of open 
disclosure of the contents of the databases 
themselves. Specifically, there sould be 
open disclosure of the number of subjects 
per age group, gender, the demographics of 
the sample, the geographic location of the 
samples, quality control measures, and 
acquisition and technical procedures (e.g., 
artifact rejection, filter and gain settings, 

digitization rates, spectral procedures, etc.). 
The reader and/or users of these databases 
must demand full disclosure of the make up 
of a database so the relative merits and 
applicability of the database for their 
particular needs can be assessed. 
Especially important is the establishment of 
the relative sensitivity and specificity of the 
normative database, which depends on 
knowledge of the population and statistical 
details of the database. 

In  the following pages clinical and 
statistical criteria for "normative" andlor 
"reference" EEG databases will be 
presented. The goal is to  understand the 
concepts and value of parametric statistics 
for the determination of diagnostic 
sensitivity and specihcity. Next will be a 
review of some of the most crucial EEG 
analyses with an attempt to highlight the 
clinical and physiological bases of each one. 
Finally, a practical discussion of the 
diagnostic and therapeutic applications of 
EEG databases will be presented. Special 
emphasis will be placed on the uses of 
"reference" normative EEG databases to  
determine the "organic" basis of a patient's 
complaints, and then to  design and evaluate 
neurotherapy. 

Criteria for the Development and Use of EEG 
Databases 

In contrast to a "conventional" visual 
reading of an EEG printout or display, I will 
refer to the exact quantification of the 
electroencephalogram as QEEG. The 
essential criteria for a clinically useful 
quantitative EEG (i-e., QEEG) database are 
the same as for all clinical normative 
databases: 1- representative demographic 
sampling and certainty that only "normal" 
or non-clinically compromised subjects 
are included, 2- large enough sample sizes 
at different ages to cover both early 
childhood and adulthood, 3- Non-artifact or 
"clean" EEG samples and, 4-Correct statis- 
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ical properties of the database samples t o  
insure interpretable parametric statistical 
analyses. 

Demographics and Gender Criteria far Normality 
and Subject Selection 

In the remainder of this chapter the 
term "normative database" will be used only 
in the sense of a "reference normative 
database". The term "normative" when 
used alone tends to  obscure or  mask the 
fundamental fact that only a "sample" of 
subjects drawn from a much larger 
population are contained in any database. 
Mathematically, the practical utility of a 
database is measured only t o  the extent 
that the database constitutes a 
representative sample of the general 
population of Neurologically and clinically 
normal individuals. Therefore, the concepts 
of normalcy and demographic 
representation are crucial to the creation of 
a "reference" EEG database of normal 
individuals. The "reference normative" 
population must be drawn from a 
representative sample of people whose 
ethnic and cultural backgrounds are as 
diverse as the clinical populations that will 
be studied. There are many demographic 
populations analyses of the United States 
that are broken down into individual states. 
In general, the US .  ethnic population is 
comprised of approximately 18% 
Afro-Americans, 3% oriental, 12% Hispanic 
and 63% Caucasian. Socio-economic status 
and handedness are also important factors 
when evaluating a normative reference 
database. Figure 1 and 2 show the 
distribution of socio-economic status (SES) 
and handedness, respectively, in the 
Thatcher (1987) database. 

Stringent normalcy criteria for 
membership in a normative QEEG 
database must also be followed. One of the 
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first reference normative QEEG databases 
was created by Matousek and Petersen in 
1973 (Matousek and Petersen, 1973). An 
independent replication of spec& ages in 
the Matousek and Petersen NDB 
established the reliability and clinical value 
of quantitative methods in EEG (John et al, 
In addition to these nominal clurical criteria 
€or exclusion, additional objective criteria 
should also be applied if available. For 
example, measures of intelligence, 
neuropsychological functioning, school 
achievement, successfd life work, etc. 
should also be considered when individuals 
are selected for inclusion in a "reference 
normative" database. 

Statistical Standards of QEEG Databases 

A fundamental rule of parametric 
statistics is the rule of independent 
gaussian distributions where each 
measurement is independent of all other 
measures and each one exhibits a 
histogram shape referred to as a "bell 
shaped" curve. Mathematically the bell 
shaped curve or gaussian distribution is 
defined as: 

where Y = height of the curve for particular 
values of X, n= 3.1416, e = 2.7183, N = 
number of cases, which means that the total 
area under the curve is N, ,LI and o = mean 
and standard deviation of thedistributisn, 
respectively. This equation can be 
simplified by writing it in standard-score 
form with a mean of 0 and a standard 
deviation of 1. When we substitute 0 and 1 
for the mean and standard deviation then 
we may write: 
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Table 1 
Neurological Normalcy Critera 

A neurological questionnaire and interview with the subjects and/or, parents and 
guardians were conducted. Entry into the normative data base required: 

1- An uneventful prenatal, perinatal and postnatal period. 
2- No disorders of consciousness. 
3- No head injury with cerebral symptoms. 
4- No history of central nervous diseases. 
5- No convulsions of emotion, febrile, or other nature. 
6- No abnormal deviation with regard to mental and physical development. 

Here Z is a standard score on X and is equd 
to(X-p)/u . The score Z is a deviation in 
standard deviation units measured along 
the base line ofthe curve from a mean of 0, 
deviations to the right of the mean being 
positive and those to the left negative. By 
substituting different values of Z in the 
above formula, different values of Y may be 
calculated. For example, when Z = 0, Y = 
llJ2.n = .3989 or, in other words, the height 
of the of the curve at the mean of the 
normal distribution in standard-score form 
is given by the number -3989. For Z = +1, Y 
= 2420, and for 2 = +2, Y = .0540. For 
purposes of assessing deviation from a 

Figure 3 

NDB, the values of Z above and below the 
mean which include a proportion -95 of the 
area of the Gaussian is commonly used as 
a level of confidence (i.e., to minimize Type 
I and Type I1 errors, or the probability of 
saymg something is present when in fact it 
is not, or saying something is not present 
when in fact it is, respectively). As shown 
in Figure three, the proportion .95 or 95% of 
the area of the Gaussian curve falls within 
the limits Z = 11.96 with the proportion of 
.05 or 5% falling outside of these limits. 
Similarly, 99% of the area of the curve falls 
within, and 1 % outside, the limits Z = 
*2.58. 

- 1.96 + 1 9 8  
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The Gaussian or Normal 
distribution, especially when used in a 
multivariate statistical test, provides 
methods to  insure independence of 
measures or zero correlation between 
different measures as they relate to  
statistical inferences. However, it should be 
noted that the gaussian distribution is a 
hypothetical distribution that, in sampling 
procedures, is never actually achieved. 
That is, the ideal of the gaussian equation 
can only be obtained mathemat idy  but, in 
real life sampling procedures, one can never 
exactly reproduce a gaussian distribution. 
Therefore, in the real world of sampling 
statistics, efforts must be taken to  minimize 
departures from a gaussian distribution. 
The most serious type of deviation from 
normality is Skewness or an unsymmetrical 
distribution about the mean (e.g., a tail to 
the left or right of the mean), while the 
second form of deviation horn normality 
Kurtosis is the amount of peakedness in the 
distribution, wluch is not as serious a 
problem since the variance is symmetrical 
about the mean (mean = median). 
However, it is preferable to  attempt to 
achieve normality as best as one can to 
insure unbiased estimates of error. The 
primary reason to  achieve Normality is 
that many different fjrequency distributions 
can be reduced to one common distribution 
and that for this distribution "there is an 
exact and known relationship between 
z-score and percentile rank" (Ferguson, 
1976). In this way comparisons between 
"Apples and Oranges" such as evoked 
potentials and EEG or relative power and 
coherence, etc., can be made with accuracy 
(see Fig. 1). 

It is important to note that 
automatic and blindly applied 
transformations of EEG measures do not 
insure improved normality of the sampling 
distri5ution. For example, J o h n  e t  a1 (1988) 
state that specific logarithmic and ratio 

transforms must be applied to  all EEG 
power, EEG coherence, EEG phase and 
EEG amplitude asymmetries in order to  
best approximate a normal distribution. 
However, it is simple to demonstrate that 
while some transformations may improve 
the normality of distributions, these same 
transforms can also degrade the normality 
of the distributions. For example, table II 
shows the effects of transforms on the 
distributions of the various EEG variables 
in the Thatcher (1987) reference normative 
database. It should be noted that, with the 
exception of absolute phase (which tends to  
be Chi Square distributed because of the 
absolute transform), the EEG variables 
were relatively well behaved and normally 
distributed without using any transforms. 
Actually one would expect, that EEG 
variables would approximate a normal 
distribution as the sample size increases, 
assuming no artifact or experimenter bias. 

Statistical Inferences and Rebability 

Two crucial and interacting concepts 
to determine valid statistical inference are: 
1- Multiple statistical comparisons and, 2- 
Reliability. Because a large number of 
statistical comparisons are typically 
conducted in QEEG analyses one must be 
careful to not bias judgments that unduly 
favor Type I or Type I1 statistical errors. A 
general rule to determine the number of 
expected statistically signi6cant differences 
is to  multiply the total number of statistical 
tests by the probability value or alpha 
value, e.g., if there were 100 statistical tests 
then 100 x .05 = 5 or one would expect 5 
statistically significant effects by chance 
alone. A second method is to  use a 
"multiple comparison" adjustment 
procedure such as the §chafe, Bonferroni or 
Tukey adjustment. The latter adjustments 
for multiple comparisons tend to bias the 
statistical tests toward reduced Type I 
errors and increased Type I1 errors (Hays, 
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Table 2 

Gaussian Distributions (c3.0) of Normative EEG Measures From the Thatcher NDB (1987) 

Rel. Power (64)' 

Tot. Power (16) 

Amx,. Asvmmetry 
Inter (32) 

Left (112) 

Right (1 12) 

Coherence 
Inter (32) 

Left (112) 

Right (1 12) 

Phase 
Inter (32) 

Left (112) 

Right (1 12) 

Untransformed ( ~ 3 )  
Skewness Kurtosis 

100% 100% 

100% 100% 

100% 94% 

100% 98% 

100% 99% 

97% 9 1% 

98% 93% 

99% 87% 

77% 56% 

87% 57% 

79% 58% 

Transformed' (<3) 
Skewness Kurtosis 

100% 100% 

100% 94% 

99% 85% 

100% 9 1% 

100% 70% 

91% 82% 

100% 93% 

100% 94% 

100% 91% 

99% 94% 

93% 88% 

'Mathematical details of the transformations in the Thatcher et a1 (1983; 1986). 

2Number of variables for each QEEG category are in parentheses. 

1973; Ferguson, 1976) and thus must be 
used with caution. Another method to  
minimize inferential errors is to  compute a 
Multivariate Analysis of Variance 
(MANOVA) test which provides a measure 
of the overall F value of statistical 
significance after adjusting for the 
intercorrelations between all of the 
variables. When comparisons to  a NDB are 
being made, the null hypothesis for the 
MANOVA is that Z = 0 and that there is an  
equal number of negative 2 values as there 
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are positive Z values with the overall mean 
Z = 0. If a statistically significant overall F 
(e.g., P < .05) is present then adjustments 
for multiple comparisons are not necessary 
(Hays, 1973). 

The second statistical concept t o  
minimize inferential errors is the concept of 
reliability. Reliability can be measured 
using the reliability coefficient defined as: 
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where S,' is the sample estimate of 
variance of the QEEG test at time one and 
S: is the estimate of the sample variance of 
the QEEG from the same patient at test 
time two. The reliability coefficient is the 
proportion of obtained variance that is true 
{i.e., reliable) and thus it represents the 
reproducible aspects of the QEEG test. For 
example, if S; = 400 and S,' = 360, then 
the reliability coefficient r, = -90. This 
means that 90 percent of the variation in 
the QEEG measurement is attributable to  
variation in true score, with the remaining 
10 percent being attributable to error. Two 
practical methods of estimating QEEG 
reliability are the "Test-Retest Method and 
the "Split-Half Method. The former is 
where a beginning session sample of EEG is 
compared to an end of session sample of 
EEG and the latter is where a testing 
session is randomly divided into two 
samples of EEG (assuming the size of each 
sample is of adequate length, e.g., > 60 
seconds). Reliability measures are 
important because they minimize both Type 
I and Type I1 errors and eliminate the need 
for multiple comparisons because "by 
definition chance findings do not replicate" 
@uffy e t  al, 1994, p. XI). 

Uniform Data Acquisition Procedures and Quality 
Control 

Quality control is essential for the 
creation of a useful reference QEEG 
database. That is, the EEG a m p u e r s  must 
be carefully calibrated with daily checks to 
insure their stability andprecisely the same 
acquisition parameters and procedures 
must be employed on all individuals 
included in the database. In addition, all 
artifact must be eliminated prior to 
subsequent spectral analyses. Furthermore, 
comparisons of an individual to a given 
NDB must be made using the exact same 
procedures and settings that were used for 
the creation of the NDB. 
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Artifact Rejection 

An especially important aspect of 
quality control is the elimination of EEG 
artifact due to eye movements, blinking, 
scalp sweating, movement, EKG and other 
non-brain sources of electrical activity. The 
importance of this aspect of EEG data 
acquisition cannot be overstated. In the 
Thatcher normative QEEG database, the 
artifact rejection procedures were contained 
within two general categories of EEG 
artifact rejection: 1- on-line artsact 
rejection and 2- off-line artifact rejection. 
The "On-Line" method used representative 
samples ofartlfact free EEG as templates to  
reject subsequent EEG samples that 
significantly deviated from the template. 
The on-line method also used diagonal eye 
electrodes to  detect eye movement as well 
as eye blinks. EEG technicians were 
trained to minimize artifact during the 
acquisition procedure by monitoring the 
subject's EEG and helping maintain the 
subject's comfort and alertness. In the 
"Off-Line" category of artifact rejection, 
considerable and diligent efforts must be 
made to edit out any evidence of artifact 
after the EEG has been digitized. Care 
must be taken to insure that "real" 
electrophysiological events are not deleted 
o r  misinterpreted as artifact, such as high 
amplitude alpha or beta bursts or mu 
rhythms, etc. Properly trained individuals 
are necessary for this phase of quality 
control. As mentioned previously, in the 
Thatcher reference QEEG database, both 
on-line and off-line procedures were 
followed, and trained Ph.D.s visually edited 
the data from each and every subject who 
was included in the database. Only when 
there was agreement between two 
independent QEEG readers were the final 
sections of EEG passed on for the purposes 
of power spectral analysis. 
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In addition to non-brain types of 
artifact (e.g., eye movements, blinking, 
sweating, EMG, EKG) brain state types of 
artifacts such as drowsiness or medication 
effects must also be either removed or 
controlled for. Drowsiness is a physiological 
state that the produces slowing of the alpha 
rhythm and diffuse delta (& associated eye 
movements). Fortunately, the effects of 
drowsiness and sleep on the EEG has been 
extensively studied and such states are 
easily recognized by a competent EEG 
technician or clinician. In the case of 
medication effects, when ever possible 
patients should be taken off of medication 
at least 48 hours prior to testing. When this 
is not possible, then the clinician must take 
into consideration the published effects of a 
given medication or class of medications on 
the EEG when comparing a patient to  a 
NDB. 

QEEG Reference Database Age Distribution 

It is important that a reference 
normative database contain an  adequate 
sample size per age group, and that it span 
the age range &.om birth to  adulthood. Of 
course the adequacy of the sample size will 
vary depending upon the age under 
investigation. For example, development is 
most rapid in young children and 
consequently, the sample size should be 
large enough to resolve EEG changes 
related to  brain development (see section 
4.1 and fig. 6). The importance of spanning 
the period from birth to adulthood stems 
from the fact that growth spurts and rapid 
sequences of change in brain development 
must be understood in the context of the 
entire human life-span (Thatcher, 1991a; 
1992; 1994a; 1996). 

Figure 4 shows the number of 
subjects per year in the Thatcher reference 
normative database which spans the human 
developmental period from 2 months to 82 
years of age. It can be seen that the largest 

number of subjects are in the younger ages 
(e.g., 1 to 6 years) when the EEG is 
changing most rapidly. Figure 5 shows the 
distribution of WRAT (Wide range 
Achievement Test) reading, spelling and 
arithmetic scores as well as full-scale I.&., 
verbal 1.Q- and performance I.Q. in the 
Thatcher reference normative database 
(Thatcher, 1987). Figure 5 shows that the 
average I.&. is consistently greater than 
100 and that there is consistency in mean 
values on the three sub-categories of the 
I-&. test as well as the W'RAT. 

Time of Day and Other Miscellaneous Factors 

There are many uncontrollable 
factors that influence the frequency 
spectrum of the EEG. For example, time 
between EEG acquisition and food intake 
(Hudspeth et al, 1981; Fishbein et al, 1990), 
the content of food intake (Cantor et  al, 
1986; Fishbein et al, 1990), the amount of 
previous night's sleep, the time of day on a 
circadian basis and motivational interest 
and involvement of the subject, etc. In 
general these factors are all confounded, 
and it would require an enormously 
expensive and large sample size to  control 
each factor individually. Even if one could 
control each factor, suchexperimental 
control would preclude the practical use of 
a NDB since each patient's EEG would have 
to be acquired in a precisely matching 
manner. Statistical randomization is one 
of the best methods to deal with these 
uncontrollable and miscellaneous factors. 
Statistical randomization of a NDB involves 
randomly varying time of day of EEG 
acquisition, time between food intake and 
EEG acquisition, food content and EEG 
acquisition, etc. across ages, gender and 
demographics. Because these factors are 
confounded with each other, randomization 
with a sufficient sample size will result in 
increased variance but, nonetheless, 
convergence toward a gaussian dmtribution. 
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Such convergence, even in the face of 
increased variance, still allows quantitative 
comparisons to be made and false positive 
and false negative error rates (i.e., 
sensitivity and specificity) to  be calculated. 
The method of statistical randomization of 
miscellaneous factors was used in the 
Matousek & Petersen, Thatcher, John and 
Duffy EEG normative databases, and the 
sensitivity and specificity of these databases 
range f?om approximately 80% to 97% 
(John et al, 1988; Thatcher et al, 1989; 
Duffy et al, 1994)'. 

Power Spectral Measures of a QEEG Database 

Because of the inherent complexity 
of EEG, some form of time series analysis 
must be employed in order to derive 
quantifiable measures. The spectral 
analysis is an efficient method to transform 
a time series into fkequency @lackman and 
Tukey, 1958). The power spectral analysis 
is only one, albeit, a very powerful method 
of time series quantification. In general, 
all spectral analyses decompose a complex 
wave form into a linear sum of more 
elemental wave-like components, or in other 
words, they transform a time series into the 
frequency domain. In the case of Fourier 
analyses, the elemental waves are sine 
waves, in the case of wavelet analyses the 
elementd components are wavelets3, etc. 
The elemental wave like components of 
spectral analyses are often referred to as 
basis functions with the important 
mathematical property of "orthonormality". 
The property of orthonormality allows for 
efficient and linear analyses to be 
performed in which the independence of the 
basis functions can be established, and 
simple translations from the time domain to 
the frequency domain can occur. 

There are many time series methods 
available to  obtain a frequency spectrum 
(Otnes and Enochson, 1972). These 
methods have been thoroughly tested and 
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mathematically derived and no further 
discussion of the mathematical details of 
these methods will be provided. All that is 
necessary to state is that given the specific 
spectral method used to derive a specific 
reference QEEG database then one must 
also use, as close as possible, that exact 
same method to  compare individuals to that 
database. 

Most important for the present 
discussion is determining which derived 
EEG measures are most critical for the 
clinical evaluation of a patient, and then 
insuring that these measures are included 
in a reference normative QEEG database. 
The clinical usefulness of derived QEEG 
measures is largely established by the 
scientific literature that has evolved over 
the past 25 years. Much of this literature 
has been reviewed in various publications 
and the reader is encouraged to consult 
these reviews and this literature (John et 
al, 1997; 1988; John, 1997; Duffy et al, 
1994; Harmony, 1983; Thatcher et al, 1989; 
Nunez, 1981; 1994; Lopes da Silva, 1991). 
Approximately 98% of the energy of the 
human EEG lies between 0 and 30 Hz; thus 
some form of spectral analysis within the 
delta (e.g., 0.5 to 3.5 Hz), theta (e.g., 3.5 to 
7 Hz), alpha (e.g., 7 to 13 Hz) and beta (e.g., 
13 to 25 Hz) frequency bands is crucial. The 
finer the frequency resolution the better 
(e.g., alpha 1 and 2 or beta 1, 2, 3 etc.), 
however, there are operational o r  practical 
limits. This is because for every single 
increase in the number of frequency bands, 
there is a squared increase in the number of 
statistical comparisons (i-e., for every 
element in a matrix there are at  least two 
indices). Thus, given the practical limits of 
data analysis the authors of all current 
NDBs decided to only emphasize a selected 
subset of EEG frequencies. The Duffs., John 
and Thatcher databases share in coverage 
of the broad spectrum of EEG from 0.5 to  30 
Hz, albeit in slightly different ways and 
with different emphases. Within the 
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frequency range from approximately 0.5 to  
30 Hz, there are in general three categories 
of EEG spectral variables that are of critical 
clinical value: 1- Power and/or amplitude, 2- 
Coherence andor phase and, 3- Derived 
ratios of amplitude and/or coherence and/or 
phase. 

Power andlor Amplitude EEG Spectral Measures 

Power is defined as u$ /cycle/second 
while amplitude is simply the square root of 
power or uv/cycle/second. Power and 
amplitude are related by the square and 
square root operation and transformations 
can be easily performed to insure Gaussian 
normality and, at the same time, to fit ones 
preference4. For the purposes of this paper, 
I will refer to EEG amplitude with the 
understanding that a simple squaring or 
square root operation equates amplitude 
and power. The crucial issues are: 1- to  
what extent is amplitude sensitive to  
non-brain electrical activity, i.e., various 
non-EEG artifacts such as EKG, EMG, eye 
movements, etc. and, 2- is EEG amplitude 
gaussian distributed. It is important to 
note that both power and amplitude are 
considered as "absolute amplitude" 
measures in that they do not only reflect the 
amplitude of brain-generated EEG, but also 
non-brain factors such as scalp resistance, 
skull thickness and various anisotropic 
conductance properties of the skull, dura 
and scalp (Nunez, 1981; 1994). A typical 
method to control for differences in scalp 
resistance and skull thickness, etc. is to  
calculate "relative power" andior "relative 
amplitude". Relative amplitude is a 
percentage measure and is defined as 
amplitude in a frequency band divided by 
total  amplitude (i.e., total amplitude is the 
sum of amplitude in all frequencies). In 
other words, relative amplitude is a 
measure of the proportion of total amplitude 
within a given frequency band and is thus 
independent of skull thickness, skin 
resistance and other, but not all, non-brain 

sources of electrical activity (e.g., eye 
movement artifact, EKG artifact, etc.). 

The clinical relevance of EEG 
amplitude is related to the fact that the 
output of a population of EEG generators is 
a function of the number of generators, the 
synchrony of the generators and the 
geometry of the generators (Thatcher and 
John, 1977; Nunez, 1981; 1994). Synchrony 
is especially important because 
mathematical calculations show a highly 
disproportionate (e.g., > 8: I) contribution to  
surface EEG amplitude by small groups of 
synchronous generators (e.g., Lopes da 
Silva, 1991; Cooper et al, 1965; Nunez,1981; 
1994). It is known that the relative and 
absolute amplitude of the EEG varies as a 
function of age and scalp location, and to  
the extent of clinical pathology. For 
example, at birth approximately 40% of the 
amplitude of the EEG is in the delta 
frequency band and only approximately 
10% of EEG amplitude is in the alpha 
frequency band. In a normal adult, the 
percent of amplitude in the delta frequency 
band is typically less than 5%, whereas the 
percent amplitude in the alpha band is 
approximately 70% in occipital areas. In 
normal subjects delta activity arises from 
the slow, modulated depolarization of large 
masses of geometrically aligned cortical 
pyramidal cells such as that which occurs 
during expectancy and sustained attention 
(Walter et al, 1965; Karahashi and 
Goldring, 1966; Tecce and Cattanach, 1995; 
Toro et al, 1994). Such slow fluctuations in 
EEG occur within the D.C. (1 to 5 second 
time constant) to  the mid-delta frequency 
range (1 to  3 Hz). Thus, EEG amplitude in 
the delta fkequency range is not necessarily 
a sign of pathology or  abnormal thalamic 
hyperpolarization, but rather, it may be a 
normal part of the EEG spectrum. 

The studies of delta activity in 
normal subjects illustrates why it is critical 
that the full frequency spectrum from, at 
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least, 0.5 Hz to 30 Hz be measured and 
spectrally analyzed (less than 0.5 Hz, e.g., 
0.1 Hz or 0.01 Hz is even better). I t  is a 
serious error to  not measure this full range 
of EEG kequencies because of the 
developmental importance of EEG 
frequency changes and the clinical 
interpretation which can be derived from 
the EEG. Caution should be exercised 
when using a database with restrictive 
filter settings. Other limitations of a 
restrictively filtered database are its 
non-applicability to infants, children, 
adolescents or geriatric populations and its 
lack of the coherence and phase EEG 
measures. Most importantly, however, the 
filter limitation of delta EEG frequencies 
significantly reduces the usefulness of the 
Sterman database. For example, 
meaningful comparisons of relative power to  
other existing databases (e.g., Matousek 
and Petersen, 1973 and the Duffy, John and 
Thatcher databases) is difficult if not 
impossible with filter restrictive EEG 
databases. 

Biophysical Linkage Between MRI and EEG 
Amplitude 

The EEG arises from the rapid 
movement of ions (e.g., Nay K, C1, etc.) 
across large areas of neural membrane 
surface, thus it is not surprising that strong 
correlations between MRI biophysical 
measures of the brain and the EEG have 
been reported (Thatcher et  al, 1998a; 
199813). MRI measures of T2 relaxation 
time are different dependmg on the relative 
concentrations of myelin, cytoplasm and 
extracellular space (Szafer et  al, 1995; 
Kroeker and Henkelman, 1986; Does and 
Snyder, 1995). Recent MRI and EEG 
correlation analyses have demonstrated 
different relationships between the cerebral 
white matter and gray matter and the EEG 
in closed head injured patients. For 
example, a commonly reported clinical EEG 
correlate of white matter damage is 

increased delta EEG amplitude (Jasper and 
van Buren, 1953; Gloor et  al, 1968; Gloor et 
al, 1977). In contrast, decreased EEG 
amplitude but not increased delta 
amplitude is a common clinical correlate of 
gray matter damage (Gloor et  al, 1968; 
1977; Goldensohn, 1979a; 1979b). 
Independent confh-mation of this 
relationship between EEG amplitude and 
white versus gray matter damage was 
provided in biophysical MRI correlations to 
the EEG in traumatic brain injured 
patients (Thatcher et al, 1998a). This 
further emphasizes the need not to 
arbitrarily restrict the frequency spectrum 
of the EEG when compiling EEG normative 
databases. Concordance between QEEG 
and MRI and multimodal integration of 
QEEG with other imaging methods will 
likely enhance the value of QEEG 
normative databases and discriminant 
analyses in the future. 

EEG Coherence Measures 

Coherence is mathematically 
analogous to  a cross-correlation coefficient 
in the frequency domain. For example, 
coherence which varies between 0 and 1, is 
a measure of the linear association between 
two variables in the same manner as the 
square of a correlation coefficient. 
Mathematically, the correlation coefficient 
is defined as: 

r =  

where x and y are deviations from the 
means and ,  respectively. The correlation 
coefficient is a very important mathematical 
concept because it represents the linear 
association between two measures, 
independent of their relative o r  absolute 
amplitudes. Amplitude normalization 
occurs because the numerator of the 
equation (i.e., cross-products or covariance) 
is divided by the standard deviation in the 
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denominator. EEG coherence is similarly 
defined as: 

where 

is the square of the cross power spectral 
density at a given frequency (0, and 

is the square of the cross power spectral 
density at  a given frequency 0, and S,@ 
and S,@ are the respective auto power 
spectral densities at that same frequency (0 
(Otnes and Enochson, 1972; Bendat and 
Piersol, 1980). Similar to the correlation 
coefficient coherence is the ratio of 
covariance divided by the cross products of 
variance and, thus, coherence is normalized 
with respect to amplitude. This is 
important in EEG analysis because it 
means that coherence evaluates the linear 
association or correlation between the EEG 
waveforms recorded fiom two dXerent scalp 
locations, independent of the EEG 
amplitude at either location. Recently, 
Nunez et al(1997) thoroughly evaluated the 

electrophysiological bases of coherence, 
including issues about reference electrodes 
and Laplacian derivations, etc. and the 
reader is encouraged to consult this 
important review. Table I11 from Nunez et 
a1 (1997) illustrates the relationships 
between normalized and unnormalized 
EEG measures.' 

EEG coherence has considerable 
clinical utility and can directly reflect 
neural network connectivity and neural 
network dynamics. Nunez (1981) first 
pointed out that EEG coherence does not 
simply decrease as a function of 
interelectrode distance, but rather, can 
increase with increased electrode 
separation. Thatcher et a1 (1986) 
systematically investigated this feature of 
human EEG coherence and experimentally 
elaborated Nunez's suggestion that EEG 
coherence reflects the action of 
cortico-cortical connections and specific 
cortico-cortical fasciculi by developing a 
"Two-Compartmental" model of EEG 
coherence. The two-compartmental model 
of EEG coherence is based upon 
Braitenberg's (1978) two-compartment 
analysis of cortical axonal fiber systems in 

Table 3 

Relationships between Normalized and Unnormalized Measures (Nunez et af. 1997) 

variance 

~~ ~ 

which compartment 'A is composed of the compartment 'B' is composed of the apical 
basal dendrites that receive input primarily dendrites of cortical pyramidal cells that 
from the axon collaterals from neighboring receive input primarily from 'long-distance' 
or 'short distance' pyramidal cells, while intracortical connections. The short 
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distance 'A' system primarily involves local 
interactions on the order of millimeters to a 
few centimeters, while the long distance 'B' 
system involves long-range interactions on 
the order of several centimeters which 
represent the majority of white matter 
fibers. These two systems exhibit two 
different network properties. System 'B', 
due to reciprocal connections and invariant 
apical dendrite terminations, is involved in 
long distance feedback or loop systems. In 
contrast, system 'A, due to the variable 
depths of the basal dendrites, is not 
involved in reciprocal loop processes but 
rather in a diffusion type of transmission 
process (Thatcher et al, 1986; 
Pascual-Marqui et al, 1988; Braitenberg, 
1978; Braitenberg and Schuz, 1991)). 

The developmental changes in EEG 
coherence in a large group of subjects 
reflects changes in the mean coupling 
constants between connected neuronal 
networks (Thatcher et  al, 1987; Thatcher, 
1992; 1994; 199813). For example, if  we 
assume that volume conduction has been 
controlled, then we can postulate a 
relationship between EEG coherence and 
two primary factors: l-the number of 
cortico-cortical connections between neural 
assembles, and 2- the synaptic strength of 
connections between neural assemblies (the 
terms cortico-cortical connections and 
intracortical connections are considered 
synonymous). This relationship is 
mathematically described as: 

Coherence = (N, x S ij) 

where N j  is a connection matrix of the 
number of connections between neural 
systems i and j, and S, is the synaptic 
strength of those connections. This 
equation provides a logical means by which 
developmental changes in EEG coherence 
can be interpreted in terms of changes in 
the number and strength of connections 
between assemblies of neurons (Thatcher et  

al, 1986; 1987; Pascual-Marqui et al, 1988; 
Thatcher, 1992; 1994). For example, 
increased coherence is due to either an 
increase in the number and/or strength of 
connections and, conversely, decreased 
coherence is due to  a decreased number 
andor reduced strength of connections. The 
neurophysiological mechanisms responsible 
for the changes in the numbers or strengths 
of connections include axonal sprouting, 
synaptogenesis, mylenation, expansion of 
existing synaptic terminals, pruning of 
synaptic connections, presynaptic changes 
in the amount of neurotransmitter and 
changes in the postsynaptic response to  a 
given neurotransmitter (see discussions by 
Purves, 1988; and Huttenlocher, 1984; 
1990). Currently, measures of EEG 
coherence can not discern among these 
various possibilities. 

The "Two-Compartmental" model of 
EEG coherence was subsequently confirmed 
and extended by Pasqual et  a1 (1988) and 
many others (Wright, 1997; Nunez, 1981; 
1994). Strong support for the existence of a 
genetically determined short versus long 
distance "Two-Compartmental" model of 
EEG coherence was also provided (van 
Baal; 1997; van Baal; 1998). For example, 
an  extensive EEG study of 209 identical 
and non-identical twin pairs was conducted 
in which the heritability of short distance 
EEG coherence was approximately 48% and 
the heritability of long distance EEG 
coherence was approximately 70%. As van 
Baal (1997) concluded "... the heritability 
estimates provide support for a two 
compartmental model [of human EEG 
coherence]." (p. 110) and that "The fact that 
heritability was sensitive to  the direction of 
cortico-cortical connectivity supports 
Thatcher's claim that individual &fferences 
in coherence reflect axonal connectivity of 
the brain..". (p. 111). 

As mentioned previously, EEG 
coherence has been shown to  exhibit clear 
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and important clinical utility. For example, 
EEG coherence is often one of the strongest 
and most sensitive of all QEEG measures in 
studies of schizophrenia (Ford et al, 1986; 
Nagase et al, 1992; Shaw et al, 1979), 
obsessive compulsive disorders (Prichep et 
al, 1993), depression Prichep et al, 1990), 
mild traumatic brain injury (Thatcher et al, 
1989), prediction of outcome following head 
injury phatcher et al, 199 lb), Alzheimer's 
Disease and Infarct Dementia (Leuchter et 
al, 1987; 1992) and ADHD (John et al, 1988; 
Marosi et al, 1992). In addition, a growing 
number of studies have also demonstrated 
relationships involving EEG coherence 
during normal cognitive function vetch, 
1996; Thatcher et al, 1983; 1987; Thatcher, 
1992; Lubar, 1997). Given the anatomical 
and physiological relevance of EEG 
coherence plus its clinical utility it would be 
remiss for any normative reference EEG 
database to omit either intrahemispheric or 
interhemispheric EEG coherence. 

Biophysical Linkage Between MRI and EEG 
Coherence 

As mentioned previously (section 
3.2) the EEG arises from the rapid 
movement of ions (e.g., Na, K, C1, etc.) 
across large areas of neural membrane 
surface and correlations between MRI 
biophysical measures of the brain and the 
EEG amplitude have been reported 
(Thatcher et al, 1998a). Biophysical 
correlations between MRI measures of T2 
relaxation time and EEG coherence have 
also been reported (Thatcher et al, 199830). 
The biophysical analyses showed that 
lengthened 1H T2 relaxation times of the 
cortical gray and white matter were related 
to: 1- decreased EEG coherence between 
short interelectrode distances (e.g., 7cm), 2- 
increased EEG coherence between long 
interelectrode distances (e.g., 28 cm) and, 3- 
differences in EEG frequency in which T2 
relaxation time was most strongly related to  
the gray matter in the delta and theta 

frequencies in CHI patients. The results 
were interpreted in terms of reduced 
integrity of proteindipid neural membranes 
and the efficiency and effectiveness of short 
and long distance EEG coherence 
compartments following traumatic brain 
injury. 

EEG Phase Measures 

EEG phase is usually computed at 
the same time as is EEG coherence. EEG 
phase is operationally defined by the 
amount of time shift of one time series with 
respect to another in order to obtain 
maximum coherence. The phase of the 
coherence function is the phase angle or 
time delay in milliseconds for S, where x 
and y are the EEG times series recorded 
from channel x and channel y. The EEG 
phase delay between two channels is 
measured when ever EEG coherence is 
measured because they are intrinsically 
related. As mentioned previously (section 
3.3), EEG phase is defined as that time 
delay between two channels in which 
coherence is at  a maximum. Studies by 
Thatcher et al(1986) have shown that EEG 
phase delays increase as a function of 
interelectrode distances and can be used to  
estimate axonal conduction velocities 
(Nunez, 1981; 1994). EEG phase has also 
been shown to  be related to the underlying 
cortico-cortical connectivity of the human 
brain and it has also been demonstrated to  
carry considerable clinical utility (Thatcher 
et al, 1989; 1991b). Unlike EEG coherence, 
however, EEG phase is more variable and 
less stable and must be evaluated with even 
more caution than EEG coherence. The 
instability of EEG phase results from the 
fact that complex numbers exhibit a 
fundamental discontinuity in their 
computation of phase angle. That is, 0' and 
36" are adjacent t o  each other thus 
resulting in large variability. In order t o  
minimize this inherent variability Thatcher 
et al(1986; 1987) computed absolute phase 
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(i.e., no negative numbers). However, even 
with this transformation and additional 
logarithmic transformations EEG phase is 
more variable and less stable than EEG 
coherence. Nonetheless, EEG phase is an  
important measure since it can be related to 
the intrinsic integrity of the gray and white 
matter as well as the conduction velocities 
of the cortico-cortical white matter (Nunez, 
1981; 1994; 1989; Thatcher et al, 1986). 
Also, whenever EEG phase is significantly 
greater than 0 milliseconds (e.g., > 5 
milliseconds} then EEG coherence, by 
definition, does not reflect volume 
conduction. 

In the studies of mild to severe 
traumatic brain injury by Thatcher et a1 
(1989; 199lb), EEG phase was among the 
most predictive and sensitive of all of the 
EEG measures. Again, given the 
anatomical and physiological relevance of 
EEG phase plus its clinical utility it would 
be remiss for any normative reference EEG 
database to omit EEG phase. However, the 
reader must be cautioned in the use of EEG 
phase and urged to rely upon EEG experts 
who have experience in the clinical 
interpretations and use of EEG phase 
before making clinical judgments based 
exclusively on EEG phase. 

EEG Amplitude Differences and Ratios 

Differences in the absolute 
amplitude between EEG recorded at 
different electrode sites has also been 
shown to be of clinical utility (John et al, 
1977; John, 1977). In normal subjects the 
greater the amplitude differences then the 
higher the mean I.&. (Thatcher et al, 1983). 
These amplitude differences appear to  be 
within a "normal range" and reflect the 
amount of functional differentiation in the 
brain. When pathology is present or 
neurologically sub-optimal conditions 
persist, then there may be significantly 
increased or decreased amplitude 

differences. For example, a focal lesion may 
result in increased delta activiw or reduced 
beta activity which may manifest itself 
through a change in amplitude differences 
between two or more electrode sites. A 
problem with amplitude differences is that 
they, by themselves, do not reveal the 
source of the differences. For example, 
increased F3-C3 amplitude dBerence may 
be due to reduced amplitude at F3 or C3 or 
increased amplitude at F3 or C3 (i.e., one 
electrode relative to the other). 
Examination of the Z score referenced 
amplitudes may reveal which electrode 
location is increasing or decreasing and 
thus contributing most to the amplitude 
differences. 

Other ratios such as thetabeta 
ratios, or a l p h a e t a  ratios or thetajalpha 
ratios, etc. have also been shown to  be of 
clinical use (Matousek and Petersen, 1973; 
Lubar, 1997). Again, however, in order to  
understand more about the source of these 
ratio differences examination of the EEG 
frequencies from individual leads is 
necessary. 

Univariate Statistics Versus Multivariate Statistics 

Most QEEG databases use both 
parametric univariate statistics and 
parametric multivariate statistics to 
compare an individual to a NDB. The Z 
score or T score are commonly used 
statistics to  express the deviation from the 
normative reference EEG values in 
standard deviations. While univariate and 
multivariate Z scores or Wilks lambda 
scores are useful statistics, the reader must 
use caution in order to  understand the Type 
I (saying something is true when it is 
actually false) and Type I1 (saying 
something is false when it is actually true) 
statistical errors that are inherent in any 
inferential statistical procedure. In 
addition to adherence t o  univariate and 
multivariate normal distributions, 
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inferential "inflation" through the use of too 
many Z or t tests can occur (i.e., increased 
Type I errors due to multiple comparisons). 
Various statistical adjustments are 
available to minimize the problem of 
multiple comparisons. As a rule of thumb, 
all one has to  do is count the total number 
of statistical tests within a specific EEG 
category (e.g., power, coherence, phase, etc.) 
and then multiply by -05 to determine the 
number of expected statistically significant 
comparisons at the probability of P < -05 
which will occur by chance alone. For 
example, if 112 univariate EEG coherence 
Z tests were performed then, one would 
expect 5.6 significant (i-e., P < .05) t o  occur 
by chance alone. Bonferroni or Scheffe or 
Tukey statistical adjustments for multiple 
comparisons assume sampling distribution 
independence and are often overly 
conservative {i-e., increase Type 11 errors). 
As described in section 2.3 one can simply 
eliminate the need for multiple comparisons 
by calculating reliability in a test-retest or 
split-half sampling procedure ( D u e  et al, 
1994, Ferguson, 1976). 

Important univariate statistical 
analyses virtues are their simplicity and 
both hquency and anatomical localization 
strengths. For example, a 4 standard 
deviation Z score in excess delta activity 
from the left parietal region (P3) points the 
clinician to a possible focal abnormality that 
is located near to the left parietal area of 
the brain. With univariate statistics as a 
guide then, Biofeedback or Neurotherapy 
can be focused on a particular region($ 
and/or EEG frequency with some confidence 
as to the location of the deviation from 
expected values. A similar argument 
pertains to EEG coherence in which both 
short and long distance EEG coherence Z 
score deviations from the NDB may carry 
specific clinical meaning and help target 
Neurotherapy. In contrast, multivariate 
statistics are complicated and reduce the 
ability to  localize the possible regions of the 

brain that are deviating from normal 
frequency and/or amplitude. Multivariate 
statistics involve the summation and 
correlation correction among a set of 
variables. This necessarily results in a type 
of anatomical and frequency smearing in 
which large collections of variables are 
averaged together. As a consequence 
multivariate statistics may or may not 
improve the sensitivity and specificity of 
QEEG and certainly reduce one's ability to 
devise Neurotherapy strategies. For 
example, if one obtains a multivariate 
discriminant score of -1.85 involving twenty 
or  more EEG measure, how does this help 
one plan Neurotherapy sessions in order to  
address this multivariate deviation from 
normal? In the case of univariate statistics 
the answer is t o  identify the most deviant 
and clinically significant EEG feature 
and/or location and then use Neurotherapy 
to move this deviant area toward the 
normal distribution. In the case of 
multivariate statistics, literally scores of 
EEG measures in combination may be 
giving rise to the multivariate Wilks 
Lambda or discriminant values and 
individual univariate statistics may 
actually be normal (Cohen and Cohen, 
1983). 

In general it is best to restrict the 
use of multivariate statistics by making 
specific hypotheses and posing specific 
clinical questions. A good use of 
multivariate statistics is in the development 
of discriminant functions when a large 
number of variables are combined into a 
single equation designed to  classify 
members of two or  more populations, 
followed by independent validation of the 
discriminant function (John et al, 1977; 
Thatcher et al, 1989; John et al, 1988). 
However the univariate examination of the 
individual variables that are entered into 
the discriminant function is important in 
understanding the physiological and clinical 
meaning of the analyses. I t  is for this 
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reason that publications of discriminant 
functions should contain a list of the 
variables that are used in the discriminant 
function (Thatcher et al, 1989). Factor 
analyses are useful to reduce redundancy 
and the size of measure sets, however, the 
ability of factor analyses to predict outcome 
or provide inferential statistics is limited 
(Cohen and Cohen, 1983). Multivariate 
analyses of variance (MANOVA) are useful 
in determining group differences after 
adjusting for intercorrelations, however, 
MANOVA is limited in its predictive and 
clinical application. A similar argument 
holds for other multivariate statistics such 
as Mahalanobis distances (Cohen and 
Cohen, 1983). 

QEEG Discriminant Functions 

The use of QEEG discriminant 
functions for the purposes of diagnosis is an 
important and complicated topic. QEEG 
discriminant functions must only be used in 
conjunction with other medical or clinical 
evaluations and diagnoses should never be 
made simply based on a given QEEG 
discriminant score p u f f y  et  al, 1994). A 
QEEG discriminant function should not be 
used blindly or without explicit publication 
of the internal details of the discriminant 
function in a refereed journal, e-g., exact 
descriptions of the variables that are 
contained in the discriminant function, 
exact description of the subjects in the 
study, the number of false positives, the 
number of false negatives, the sensitivity 
and specificity, and one or more 
independent cross-validations. Publication 
of these details is necessary and required 
before a discriminant function can be used, 
especially t h e  independent  
cross-validation(s) of the discriminant 
function. All of these criteria were met in 
the Thatcher et a1 (1989) mild head injury 
discriminant function which has been used 
in various settings since its publication. 

The Thatcher et al (1989) QEEG 
discriminant function is sometimes 
confused with a "normative EEG database" 
(i.e., NDB). A discriminant function is not 
a "database" but rather it is a set of derived 
measures that act as a type of "pattern 
recognition" procedure. A discriminant 
function examines a limited number of 
variables to  determine whether the 
multivariate combination or pattern of the 
variables is sufficient to class* an 
individual as a member of a clinical group 
or an age matched normal control group. 
The discriminant function merely states 
that such an EEG pattern is present or 
absent and provides a statistical estimate of 
classification accuracy. The clinical merit of 
a discriminant function is partly measured 
by the extent that the variables co-vary 
with the predicted pathology, e.g., increased 
coherence in the frontal lobes, decreased 
high frequency amplitude in the case of 
mild head injury (Thatcher et al, 1989). All 
of these factors must be considered when 
one uses a QEEG discriminant function. 

Importantly, a discriminant function 
is a multivariate statistical test and it 
suffers from all of the problems mentioned 
in sections 4.0 and 5.2 in regards to  its use 
for Neurotherapy. Univariate NDB 
comparisons are the best choice for tailoring 
Neurotherapy with the evaluation of the 
EEG discriminant function being used as a 
diagnostic monitor and not as a variable to  
be used in the biofeedback procedure itself 
(at least not until a paper is published 
showing that this is possible). 

Growth Spurts in EEG Development: 

Human cerebral development does 
not occur as a smooth linear function of age, 
but rather it is non-linear with abrupt 
changes and oscillations (Thatcher et al, 
1987; Thatcher, 199 la; 1992; 1994a; 
Hudspeth and Pribram, 1990; Van Baal, 
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1997; Chugani, 1996). One advantage of a 
"LFfe-Span" database, extending from birth 
to adulthood, is that it provides the ability 
to evaluate the rate and time course of 
human cerebral development. Two issues of 
major importance in understanding child 
development are: 1- determining the extent 
to which the left and right cerebral 
hemispheres develop at different rates and 
at different ages and, 2- determining 
whether human cerebral development 
occurs as a smooth function of age or in 
discrete steps or stages. If human cerebral 
development QCCUTS in steps or stages, then 
it is important to quantify which cortical 
regions develop at what ages. The clinical 
relevance of this information concerns: 1- 
the early detection of deviation from normal 
development in individual children, 2- the 
use of EEG to evaluate remediation 
strategies and treatment and, 3- the 
distinction between an  "psychological" 
versus an "organic" basis for a childhood 
disorder. 

The presence of specific cerebral 
growth spurts at particular ages are clearly 
revealed in the Thatcher EEG normative 
reference database (Thatcher et al, 1987; 
Thatcher, 1994a). Figure 6 shows the 
velocity curves or the first derivatives (i.e., 
rate of change of EEG Coherence) of the 
developmental trajectories of mean EEG 
coherence from the sub-groupings of 
electrode pairs that had the highest factor 
loadings (e.g., > .80) (Thatcher, 1991a). 
Growth spurts were defined by a positive 
peak in the first derivative (i-e., a postnatal 
time of maximum growth) in multiple 
interelectrode combinations. These data 
provide evidence of differential cerebral 
development and stages of Corticocortical 
connectivity. The data also emphasize the 
non-linearity of cerebral development and, 
thus, the need for large sample sizes 
especially during the early childhood and 
adolescent periods of development. 

The non-linearity of EEG 
development was also demonstrated in 
analyses of Matousek and Petersen's (1973) 
NDB using relative power (Thatcher, 1980; 
Epstein, 1986; Hudspeth and Pribram, 
1990). Thus, caution should be exercised 
when using NDBs that are based upon a 
linear analysis of EEG development or 
NDB's that use linear regression equations 
to adjust for age (John et al, 1980). For 
example, in the John et a1 (1987) studies 
linear regression analysis of the Matousek 
and Petersen (1973) NDB as well as the 
N.Y.U. Medical Center NDB were 
conducted. Examination of the figures 
shows that a relatively small amount of 
variance was explained by the linear 
regression equations (e.g., < 70%, personal 
analyses), thus considerable error is 
inherently present when such linear 
analysis are used for normative EEG 
database comparisons. Because of the 
inherent non-linearity in human life-span 
EEG development, the Thatcher NDB does 
not use age regression and, instead, uses 
sliding averages with approximately a 3 
month age resolution (see Figure 4 and 
Thatcher, 1992; 1994a; 1994b). 

Individualization of Neurofeedback based on 
reference QEEG Evaluation 

To my knowledge, the first use of a 
lifespan NDB for the purpose of 
Neurotherapy was devised by Thatcher and 
Lexicor, Inc. in 1992. Prior to 1992, 
Neurotherapy protocols were widely 
different, with differing rationalizations and 
were essentially arbitrary protocols. That 
is, a given Neurotherapist discovered by 
practice that a certain protocol, e.g., 
increased Alpha power at C3, seemed to 
help his or her patients. Over time, this 
protocol became favored and was sometimes 
promoted as an "effective " protocol for 
Neurotherapy. Also, prior to 1992, the 
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objective assessment of the strengths and 
weakness of the neural organization in a 
given patient was not used. Also, the 
ability to use EEG to determine whether 
there was an  "organic" basis for a patienfs 
complaints was not used, and Neurotherpy 
protocols were not individualized based 
upon the EEG features and anatomy most 
deviant from normal. It was the recognition 
of this 'gap" in clinical assessment that 
inspired the first applications of a NDB to 
the field of Neurotherapy. 

As mentioned in the introduction, 
there are at least three primary reasons to  
use a NDB for the purposes of 
Neurotherapy: 1- to assess the neurological 
status of the patient and to determine to 
what extent there is a neurological basis of 
the patient's complaints (i-e., the issue of 
Organicity), 2- to identlfy possible strengths 
and weaknesses in the organization and 
electrophysiological status of the patient's 
brain so as to aid in the efficient and 
optimal design or choice of Neurotherapy 
(i.e., the issue of Therapy Design ) and, 3- to 
objectively evaluate the efficacy of 
treatment by comparing the patient's EEG 
before and after treatment (ie., the issue of 
Treatment Evaluation ). A fourth and 
long-term reason, is that the use of a 
standardized and objective EEG test may 
help promote scientific publications in 
refereed journals to evaluate the efficacy of 
Neurotherapy as it applies to  different 
patient populations. 

The Issue of Organicity 

As a clinical practitioner one is often 
faced with the problem of determining 
whether or to  what extent purely 
psychological factors such as dworce, 
emotional trauma or malingering, etc. are 
contributing to the symptoms presented by 
the patient. Conversely, the clinical 
practitioner needs to  understand whether 
and to what extent there is a neurological or 

organic basis for the patient's complaints. 
Quite different therapeutic strategies follow 
depending on the extent to which 
neurological andor psychological factors are 
contributing to the patient's problems. The 
use of QEEG evaluations using a NDB may 
aid in this basic clinical assessment by 
disclosing a normal EEG or an abnormal 
EEG. For example, the presence of large 
amplitude spike and waves may indicate 
the presence of epilepsy for which a 
conventional neurological evaluation and 
treatment may be recommended. The 
presence of large amplitude delta activity 
may indicate a n  infarct or other lesion for 
which an  MRI and other neurological 
evaluations would be recommended. Less 
dramatic and more subtle neurological 
problems may also be present such as 
significant deviation from normal in short 
and/or long distance EEG coherence or in 
the scalp distribution of EEG power. In the 
latter case, Neurotherapy may be highly 
recommended. At this point it is important 
to re-emphasize, however, that the clinical 
practitioner must always be aware of the 
statistical issues involved in the use of a 
NDB (see sections 2 - 4) and, thus, must 
ultimately rely upon his or her clinical 
judgment. Such reliance is not unique to 
QEEG since any clinical diagnostic test only 
provides partial information that is taken 
into consideration in the context to the total 
patient evaluation when rendering a 
clinical judgment. 

The Issue of Therapy Design 

The use of a NDB allows for 
individualization of EEG Biofeedback o r  
Neurotherapy based upon the EEG features 
and anatomical locations that are most 
deviant from normal Individualization of 
Neurotherapy should be contrasted to  the 
standard pre- 1992 methods whereby a 
relatively rigid and arbitrary set of 
pre-designed protocols were administered 
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without awareness of an individual's EEG 
profile. NDB analysis allows for more 
standardization of Neurotherapy across 
patients and clinics, as well as for 
potentially more efficient Neurotherapy by 
focusing on the most statistically deviant 
EEG features and anatomy. It is important 
to recognize that Neurotherapy is a young 
and growing discipline, and NDB should not 
be considered as the only diagnostic method 
or to be used at the exclusion of biofeedback 
protocols that a given clinician has found 
useful. However, hDB based Neurotherapy 
can help facilitate the optimal or most 
efficient biofeedback approach and help 
quantify the efficacy of any given protocol, 
in comparison to other protocols. Finally, 
univariate and not multivariate analyses 
are the most straight forward and 
interpretable QEEG measures to be used 
for therapy design. Caution should be 
exercised in the design of neurotherapy 
based solely on multivariate analyses, 
including discriminant analyses and 
Mahalanobis statistics. 

' 

The Issue of Treatment Evaluation 

There are at least two categories of 
treatment evaluation where NDB's play a 
role: 1- Improved efficiency or optimization 
of treatment protocols and, 2- evaluation of 
the outcome of treatment. Both of these 
categories benefit from a quantitative and 
objective evaluation of methods used for 
treatment as well as the efficacy of 
treatment. For example, the extent to 
which brain EEG measures normalize, i.e., 
exhibit reduced Z scores following 
treatment can be assessed using a NDB 
(Hoffman et al, 1996a; 199613). The 
test-retest reliability and the sensitivity and 
specificity of treatment can also be 
evaluated using an EEG NDB. The number 
of sessions may be minimized by evaluating 
the progress of 'normalization' of the EEG 
with respect to an NDB. These means 
optimization reduced time and cost to 

patients and third party insurers plus 
improved therapeutic outcome may be 
derived. 

The use of a NDB for the purposes of 
Neurotherapy is relatively recent and the 
full benefits of such an approach are yet to 
be realized. However, it is believed that 
increasing knowledge about anatomy and 
the genesis of EEG coupled with the 
objective evaluation of a patient's EEG with 
respect to a normative database will 
facilitate the application of Neurotherapy 
and eventually improve its efficacy as well 
as its scientific foundations. 
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FIGURE LEGENDS 

Figure one: The chstribution of socio-economic 
status in the Thatcher 1987 EEG reference 
normative database (NDB) as measured by the 

Holhngshead four factor criteria (Hollingshead, 
1975). 

Figure two: The distribution of handedness as 
a function of age in the Thatcher 1987 EEG 
reference normative database (NDB) as 
measured by an eight item "1ateraLity" test 
consisting of three tasks to determine eye 
dominance, two tasks to determine foot 
dominance and three tasks to determine hand 
dominance. Scores ranged from -8 (representing 
strong sinistral or left hand preference) to +8 
(representing strong dextral or right hand 
preference). Ambidextrous subjects were 
defined by a laterality score between plus and 
minus 2. 

Figure three: A normal curve showing values 
of Z 0, which includes the proportion which is 
-95 of the total area. The left and right tails of 
the distribution show probability values of -025 
(one-tailed). The c h c a l  evaluation of EEG 
measures rely upon such a normal distribution 
by estimating the probability of finding an 
observed EEG value in a given range of a 
normal population 

Figure four: The number of subjects per year 
in the Thatcher 1987 EEG reference normative 
database (NDB). The database is a "life-span" 
database with 2 months of age being the 
youngest subject and 82.3 years of age being the 
oldest subject. This figure shows the number of 
subjects constituting mean values which range 
fiom a mean of -5 years to 68 years of age and 
constituting a total number of subjects = 564. 
The Thatcher NDB also uses Savitzky and 
Golay (1964) smoothed s l i h g  averages with 
approximately .25 year (i.e., 3 month) age 
increments. 

Figure five: The dmtribution of mean WRAT 
(Wide range Achievement Test) reading, 
spelling and arithmetic scores as well as the 
mean full-scale I.&., verbal I.&. and 
performance I.&. in the Thatcher 1987 EEG 
reference normative database (NDB). 

Figure six: The velocity curves or the first 
derivatives (Mean CoherenceITime) of the 
developmental trajectories of mean EEG 
coherence from the sub-gxoupings of electrode 
pairs that  had the highest factor loadings (e.g., 
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> .SO) (Thatcher, 1991a). Growth spurts were 
defined by a positive peak in the first derivative 
(i.e., a postnatal time of maximum growth) in 
multiple interelectrode combinations (from 
Thatcher, R.W. Cyclic cortical reorganization: 
Origins of Cognitive Development, In: G. 
Dawson & K. Fischer (Eds.), Human Behavior 
and the Developing Brain, New York, Guilford 
Publications, Inc., 1994b). 

1 The term "normative" when used alone tends 
to obscure or mask the fundamental fact that 
only a "sample" of subjects drawn from a much 
larger population are contained in any database. 
The practical utility of all clinical databases 
exusts only to the extent that the database 
constitutes a representative sample of the 
general population of neurologically and 
clinically normal individuals. 

2 Recently Kaiser and Sterman (L994) have 
stated that they have observed circadium 
periods in the EEG spectrum in a 
cross-sectional study. However, because they 
conducted a cross-sectional study and not a 
repeated measures study their conclusions are 
not supportable. For example, the Kaiser and 
Sterman (1994) study was confounded with time 
between food intake and EEG acquisition, food 
content and EEG acquisition and amount of 
sleep deprivation experienced the night before 
EEG acquistion. These and other factors can 
only be controlled in a counter-balanced or 
randomized repeated measures design. 

3 A wavelet is a symmetrical and smoothly 
increasing and decreasing oscillation which 

forms a "basis" function for orthonormal 
mathematical formulations. What makes 
wavelet bases especially interesting is their 
property of self-similarity , i.e., every function 
in a wavelet basis is a dilated and translated 
version of one (or possibly a few) mother 
functions. Once one knows about the mother 
function, one knows everthing about the basis 
functions. 

4 The term "Power" was hstorically used by 
engineer's during the early applications of 
spectral analysis. As explained by Blackman 
and Tukey (1958) power is defined as the square 
of the autocovariance function in which the time 
measure was voltage across (or current through) 
a pure resistance of one ohm, and the time 
average power dissipated in the resistance is 
strictly proprtional to the variance of the 
voltage or current. This important special case 
is the historical reason for the adjective "power"- 

5 There may be confusion about the terms 
'coherency' versus 'coherence'. Coherency is 
defined as the complex number representation 
where the real or x-axis is magnitude and the 
imaginary or y-axis is phase (Bendat and 
Piersol, 1980). Coherence is defined as the 
absolute length of the resultant vector or 
hypotenuse in the complex plane (i.e., the 
coherency complex number representation). 
Thus, mathematically, coherence is defined as: 

coh =- 

where x and y are the coherency measures of 
magnitude and phase. 
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